Savitribai Phule Pune University, Pune

Faculty of Science and Technology

Board of Studies Electrical Engineering

Syllabus Third Year Electrical Engineering (2019 course) (w.e.f. 2021-22)

	Savitribai Phule Pune University, Pune															
	Syllabus: Third Year (TE) Electric									erir	ng (20	19	cou	rse)		
	(w.e.f 2021-22)															
	SEMEST													C	394	
Course	Course	e <u>reaching Scheme</u> <u>Examination Scheme</u> <u>Cr</u>							Cre	dit SEM						
code	Name	Th	Pr	Tu	/PW /IN	ISE	ESE	TW	PR	OR	Total	Th	Pr	Tu	/PW /IN	Total
303141	Industrial and Technology Management	3	0	0	0	30	70	0	0	0	100	3	0	0	0	3
303142	Power Electronics	3	4#	0	0	30	70	0	50	0	150	3	2	0	0	5
303143	Electrical Machines-II	3	2	0	0	30	70	25	25	0	150	3	1	0	0	4
303144	Electrical Installation Design and Condition Based Maintenance	3	4#	0	0	30	70	25	0	25	150	3	2	0	0	5
303145	Elective-I	3	0	0	0	30	70	0	0	0	100	3	0	0	0	3
303146	<u>Seminar</u>	0	0	0	1	0	0	50	0	0	50	0	0	0	1	1
$303147 \frac{\text{Audit course-}}{\text{V}} 2^* 0 0 0 0 0$							0	0	0	0	0	GF	RAD	E: PF	P/NP	0
1	Total	15	10	0	1	150	350	100	75	25	700	15	5	0	1	21
2021454	30314	5: El	lectiv	e-I	1 1 1	<i>.</i>	-	1		3031	147 : A	udit	Cou	rse-	V	
303145A System	: Advanced Mic	rocoi	ntrolle	er and	d Embe	edded	1	3031	47A	: <u>Ene</u>	rgy sto	rage	syste	ems		
303145B	: Digital Signal	Proce	ssing		1	251	4536	3031	47B	: Star	t-up &	Disr	uptiv	e inr	ovatio	n
303145C	: Open Elective	14	AV.	-	-4	111	311			N V						-
					SF	CME	STE I	R-II								
Course	Course	Те	achin	g Sch	eme	1	Exan	ninatio	n Scł	eme	201			Cre	dit	
code	Name	Th	Pr	Tu	SEM /PW /IN	ISE	ESE	тw	PR	OR	Total	Th	Pr	Tu	SEM /PW /IN	Total
303148	<u>Power System-</u> <u>II</u>	3	2	1	0	30	70	25	50	0	175	3	1	1	0	5
303149	<u>Computer</u> <u>Aided Design</u> <u>of Electrical</u> <u>Machines</u>	3	4#	0	0	30	70	50	0	25	175	3	2	0	0	5
303150	<u>Control</u> <u>System</u> <u>Engineering</u>	3	2\$	1\$	0	30	70	25	0	25	150	3	1	0	0	4
303151	Elective-II	3	0	0	0	30	70	0	0	0	100	3	0	0	0	3
303152	<u>Internship</u>	0	0	0	4	0	0	100	0	0	100	0	0	0	4	4
303153	<u>Audit Course</u> <u>VI</u>	2*	0	0	0	0	0	0	0	0	0	GF	RAD	E: PF	P/NP	0
	Total	12	8	2	4	120	280	200	50	50	700	12	4	1	4	21
	303151	l:El	ectiv	e-II						80315	53 : Ai	ıdit	Cou	rse-	VI	
303151A :	IoT and its Applie	cation	is in E	Electri	cal Eng	gineerir	<u>1g</u>	3031	53A:]	Ethica	l Practi	ces fo	r Eng	ginee	rs	
303151B :	Electrical Mobilit	<u>y</u>						3031:	53B : <u> </u>	Projec	t Manag	gemei	<u>1t</u>			
303151D	<u>Cybernetic Engin</u> Energy Managam	eering	7 2													
#Practical	consists of Part A	& na	rt B.	PART	A: Re	gular e	xperim	ents &	part 1	3; to ¹	oridge th	ne gar	bety	veen	theory	&
actual indu	actual industrial practices. For subject 303144; there will be auto cad drawing on Electrical installation, Electrical															

wiring, cabling etc. For 303149, Part A, Regular drawing by hand & part B same drawing by AutoCAD.

\$ tutorial credit merged with Practical.

* Conduct over and above these lectures.

•	303145A: Elective-I: Advanced Microcontroller and									
	Embedded System									
	Teac	hing	Scheme	Credi	ts	Exami	nation Sch	eme		
Theo	ry	03	Hr/Week	TH	03	ISE	30 Ma	ırks		
	<i>v</i>					ESE	70 Marks			
Prerea	isite:	I		I						
1. Knowl	edge of	Numb	er system and Basic	logic compone	ents.					
2. Progra	mming	basics	of C language.	0						
3. Advan	tage of I	Micro	controller over Micro	processor.						
Course	Objec	tives	The course aims to:							
1. Help S	tudents	unders	stand Architecture of	PIC 18F458 m	icrocon	roller.				
2. Create	and enh	ance a	bility to write and Int	terpret Assemb	oly and C	C language for	or PIC 18F45	8.		
3. Make	students	s unde	erstand procedure to	o interface pe	ripherals	s with PIC	18F458 for	various		
Applic	ations.				_					
Course	Outco	mes:	At the end of this	s course, stu	ident w	vill be able	e to			
CO1 E	xplain a	archite	ecture of PIC 18F45	8 microcontro	oller, its	instruction	s and the add	dressing		
m	odes.	25	avitribal Ph	ule Pun	e un	iversit	У			
CO2 U	se Port	s and t	imers for peripheral	interfacing an	nd delay	generation.				
CO3 Ir	terface	speci	al and generate even	ts using CCP	module					
CO4 E	ffective	ly use	interrupt structure i	n internal and	Externa	al interrupt r	node.			
CO5 E	ffective	ely use	ADC for parameter	measurement	and als	o understan	d LCD interf	acing.		
CO6 U	se Seria	al Con	nmunication and var	ious serial con	nmunic	ation protoc	ols.			
Unit	PIC A	Archit	ecture and Embedde	ed C	. W			07 hrs		
01			N	Present	PE -	A				
Compari	son of (CISC a	and RISC Architectu	res, Data and	Progran	n memory of	ganization, l	Program		
Counters	, Stack	pointe	er, Bank Select Regis	ster, Status reg	ister, Er	nbedded C a	concepts, Hea	ader and		
source fi	es and	pre-pr	ocessor directives, D	Data types, dat	a structu	ires, Contro	l loops, funct	tions, bit		
operation	is.			200	282	3.11				
Unit	Port a	and T	imer 0 Programming	g	IT LA	34		05 hrs		
02					3.4	N. C.				
I/O Ports	and rel	lated S	SFRs, I/O port progra	amming in C.	PIC 18	Timer 0 Pro	graming in C	C. Delay		
program	ning (v	vith ar	d without Timer0).	LED Interfaci	ng and i	its program	ning.	0.6.1		
Unit	ССР	Modu	le and its application	ns				06 hrs		
03										
CCP mo	dule in	PIC 1	8 microcontroller, T	imers require	d for CC	CP Applicati	ons, Applica	tions of		
CCP mo	de Ger	neratio	on of Square wavef	orm using C	ompare	mode of C	CP module.	. Period		
measure	nent of	unkno	own signal using Cap	oture mode in	CCP mo	dule, Speed	control of D	C motor		
using PV	Inter		CP module.					051		
Unit	mer	rupts	tructure and its Prog	grammig				05 nrs		
04		•				•				
Interrupt	Progra	mmin	g, Programming of T	l'imer0 interru	pts, Pro	gramming o	of External in	iterrupts		
		struct	ure and I CD interf	acing				07 hm		
0111t 05		suuu		acing				07 HFS		
			ing of ADC mains	intonnata NA		ant of tame	nonoture or 1	Dourser		
Lising DI	C, PIOE	grannn	oller Interfacing of	Interrupts, M I CD $(16v^2)$	easurent n A bit r	node	perature and	rower.		
Using PI	Saria	l Com	munication and its	rotocols		nouc.		06 hm		
Unit	Seria		munication and fts	0101018				UU AITS		

06							
Serial Cor	nmunication structure and	its programming (Da	ta transmit and Receive	e), Introduction to			
Communi	cation protocols as SPI and	MODE BUS					
Test Boo	oks:						
[T1]	PIC Microcontroller and	d Embedded Systems	s Using Assembly and	C for PIC18 by			
	Muhammad Ali Mazidi,	Rolind D. McKinley	, Danny Causey, Pears	on Education.			
[T2]	Fundamentals of Microc	controllers and Applic	cations in Embedded S	Systems with PIC			
	by Ramesh Gaonkar, Th	omson and Delmar le	earning, First Edition.				
[T3]	Programming And Cust	comizing the PIC Mi	crocontroller by Myk	e Predko, TATA			
	McGraw-Hill.						
[T4]	PIC microcontroller: An	introduction to softw	ware and Hardware int	erfacing by Han-			
	Way-Huang Thomson D	elmar Learning.					
[T5]	Microcontroller Theory a	and Applications with	PIC18F, M. Rafiquzz	aman, John Wiley			
	and Sons						
Referen	ce Books:						
[R 1]	PIC18F458 datasheet						
[R2]	MPLAB IDE user guide	S					
[R3]	MICROCHIP Technical	Reference Manual o	f 18F4520 Embedded	Design with PIC			
	18F452 Microcontroller	by John B. Peatman,	Prentice Hall				
		and and and first	in the				
	Unit	Text Books	Reference Books				
	Unit 1	T1,T2,T3,T4	R1				
	Unit 2	T1, T2, T3, T4, T5	R1,R2				
	Unit 3 T1,T4,T5 R1						
	Unit 4	T1,T2,T3,T4	R1				
	Unit 5	T1,T2,T3,T4	R1				
	Unit 6	T1,T2,T3,T4	R1,R3				

	303151B: Elective-II: Electric Mobility							
	Те	aching	Scheme	Credit	S	Exam	ination Sc	heme
Th	eorv	03	Hr/Week	ТН	03	ISE	30 M	arks
	v					ESE	70 M	arks
Prore	anisit	•				LUL	7010	
Basic	concept	of Batter	ries Electrical Motors	Power Flectr	onics			
Cour	so Obi	octivos	• This course aim	s to	omes			
	se Obj	tudonta	I more than and the need of	s iu	Flootri	o & Uybrid	Electric vohi	alas
	1. cc							CIES.
2. 10	o differe	ntiate an	a analyze the various	energy storage	devices	S.		
3. To	o impart	the know	wledge about architect	ture and perform	mance of	of Electric ar	nd Hybrid Vo	ehicles
4. To	o classif	y the diff	ferent drives and contr	rols used in ele	ctric vel	hicles.		
Cour	se Out	comes:	At the end of this	s course, stu	dent v	vill be able	e to	
CO1	Analyz	ze the con	ncepts of Hybrid and	Electric vehicle	es.			
CO2	Descri	be the di	fferent types of energ	y storage system	ms			
CO3	Compr	ehend th	e knowledge of the ba	attery charging	and ma	nagement sy	vstems.	
CO4	Classif	fy the dif	ferent mode of operat	ion for hybrid	vehicle.	1110131	9	
CO5	Apply	the diffe	rent Charging standar	ds used for ele	ctric vel	hicles.		
CO6	Differe	entiate be	etween Vehicle to hom	ne & Vehicle to	o grid co	oncepts.		
Unit	01 Int	roductio	on to Hybrid and Ele	ectric vehicles				06 hrs
Need a	and imp	ortance o	f Electric Vehicle and	l Hybrid Electr	ic Vehi	cles, Enviror	nmental imp	ortance of
Hybrid	d and El	ectric ve	hicles. Hybrid Electri	c vehicles: Co	ncept a	nd architectu	re of HEV o	lrive train
(Series	s, paralle	el and ser	ies-parallel). Micro H	ybrid, Mild Hy	brid, Fu	ıll Hybrid, Pl	lug-in Hybrid	d, Electric
vehicl	es: Con	ponents.	, configuration, perfor	mance, tractive	e effort,	Advantages	and challeng	ges in EV.
Unit	02 En	ergy Sto	orage Systems	en denerte a	75.1	2		06 hrs
Introd	uction to	o Energy	Storage Requirement	s in Hybrid and	l Electri	c Vehicles, 1	Battery spec	ifications,
Batter	y based	energy s	torage and its analysi	s, Classificatio	n of lith	num-ion bat	teries, Alum	inum Air
and A	dization	n = 100 Dates of Liltro	consister and Bettery	Selection mot	e, Supe	r Capacitor	based energ	y storage,
Imit		ttery Ch	arging and Manager	ment Systems	nouorog	sy for the en	ergy storage	06 hrs
introdu	US Da	Difforent	Charging algorithms	and Charging r	nothod	Coll Polono	ing mothods	00 111 5
Batter	v Manao	Jinerent S	vstem. Functions of I	and Charging I RMS Block di	agram c	of BMS Sol	Testimation	methods
Therm	al Mana	agement	of Battery.	Bivilo, Biotek di	agrain		Lotinution	memous,
Unit	04 Hv	brid Pov	wer Train and mode	of operation				06 hrs
Contro	ol Strate	gies and	Design of the Major	Components:	Series a	nd Parallel	Hybrid Elec	tric Drive
Train.	Energy	Consum	ption in Braking, Brak	king Power and	Energy	on Front an	d Rear Whe	els, Brake
Syster	n of EV	s and HE	Vs, Regenerative bral	king	05			,
Unit	05 Dr	ives and	Charging Infrastru	cture				06 hrs
Select	ion of d	rives for	Electric vehicle: PM	ISM drive and	BLDC	drive, Sizin	g of motor,	Charging
Levels	Levels: 01,02 and 03, Charging Standards: CCS, CHAdeMO, SAE J1772, IEC 60309, Bharat DC 001.							
Bharat	t AC 00	1, Electri	c Vehicle Supply Equ	ipment (EVSE	E).			
Unit	06 Ve	hicle to]	Home, Vehicle to Ve	hicle and Vehi	icle to (Grid		06 hrs
Vehic	Vehicle to Home: Introduction, applications, V2H with demand response, Case Study of V2H.							
Vehic	le to Gri	id: Intro	duction of V2G, V2C	6 infrastructure	in the	smart grid, I	Role of aggr	egator for
V2G,	V2G, Case study of V2G, Vehicle to Vehicle: Introduction of V2V, Concept & structure.							
Test	Books :	•						
[T1]	"El	lectrical `	Vehicle", James Larm	inie and John l	Lowry,	John Wiley	& Sons, 201	2.

"Electric and Hybrid-Electric Vehicles", Ronald K. Jurgen, SAE International Publisher.
"Energy Systems for Electric and Hybrid Vehicles", K T Chau, The institution of
Engineering and Technology Publication
"Batteries for Electric Vehicles", D.A.J Rand, R Woods & R M Dell ,Research studies
press Ltd, New York, John Willey & Sons
Electric & Hybrid Vehicles-Design Fundamentals, CRC press
ce Books:
"Modern Electrical Hybrid Electric and Fuel Cell Vehicles: Fundamental, Theory and
design", Mehrdad Ehsani, Yimin Gao and Ali Emadi. CRC Press, 2009.
"Vehicle-to-Grid: Linking Electric Vehicles to the Smart Grid", Junwei Lu & Jahangir
Hossain et al (eds), IET Digital Library.
"Automobile Electrical and Electronic systems", Tom Denton, SAE International
publications.
"Hybrid Electric Vehicles: Principles and Applications with Practical Perspectives", C.
Mi, M. A. Masrur and D. W. Gao, John Wiley & Sons, 2011.
The Electric Vehicle Conversion handbook – Mark Warner, HP Books, 2011.
Resources:
https://www.theiet.org/resources/books/transport/vehicle2grid.cfm?
https://www.sae.org/publications/books/content/pt-143.set/
http://nptel.ac.in/courses/108103009/

SAVITRIBAI PHULE PUNE UNIVERSITY

SYLLABI OF ALL 4 ELECTIVE SUBJECTS ELECTED BY STUDENTS IS GIVEN IN THIS DOCUMENT

FACULTY OF ENGINEERING

SYLLABUS FOR

B.E. ELECTRICAL ENGINEERING

(2015 course)

WITH EFFECT FROM YEAR 2018-2019

Savitribai Phule Pune University FACULTY OF ENGINEERING

B.E. Electrical Engineering (2015 Course) (w.e.f. 2018-2019)

					SEMF	ESTER	-I						
Sr Subject		Subject Title (Hrs/We		aching Examination Scheme cheme (Marks) s/Week)				Total	Credit				
No	Code	Subject file	ТН	PR	TU	P In Sem	P End Sem	TW	PR	OR	Marks	TH / TU	PR + OR
1	403141	<u>Power System</u> <u>Operation and</u> <u>Control</u>	03	02		30	70	25		25	150	03	01
2	403142	PLC and SCADA Applications	04	02		30	70	25	50		175	04	01
3	403143	Elective I	03	02		30	70	25			125	03	01
4	403144	Elective II	03			30	70				100	03	
5	403145	Control System	03	02		30	70	25		25	150	03	01
6	403146	Project I			02					50	50	02	
	403152	Audit Course V											
		TOTAL	16	08	02	150	350	100	50	100	750	18	04
	SEMESTER-II												
			Т	eachir	ng	E	xamin	ation S	Schem	e			
			Scheme (Marks)					Cr					
Sr	Subject	Subject Title	(H	rs/We	ek)					T	Total		n
No	Code		TH	PR	TU	P In Sem	P End Sem	TW	PR	OR	Marks	TH / TU	PR + OR
1	403147	Switchgear and Protection	03	02		30	70	50		25	175	03	01
2	403148	Power Electronic Controlled Drives	04	02		30	70	25	50		175	04	01
3	403149	Elective III	03	02		30	70	25		25	150	03	01
4	403150	Elective IV	03			30	70				100	03	
5	403151	Project II			06			50		100	150	06	
	403153	<u>Audit Course</u> <u>VI</u>											
TOTAL			13	06	06	120	280	150	50	150	750	19	03

- **TH** Theory lectures hours/week
- PR Practical hours/week
- TU Tutorial hours/week

- TW Term work
- OR Oral
- PP Paper- In semester and End Semester

Elective I	(403143)	Elective	II (403144)
A)	Fundamentals of Microcontroller	A)	Restructuring and Deregulation
	MSP430 and its Applications [Open	B)	Electromagnetic Fields
	Elective]	C)	EHVAC Transmission
B)	Power Quality	D)	Electric and Hybrid Vehicles
C)	Renewable Energy Systems	E)	Special Purpose Machines
D)	Digital Signal Processing		
Elective I	II (403149)	Elective 1	IV (403150)
A)	High Voltage Engineering	A)	Smart Grid
B)	HVDC and FACTS	B)	Robotics and Automation
C)	Digital Control System	C)	Illumination Engineering
D)	Intelligent Systems and Applications	D)	VLSI Design[Open Elective]
	in Electrical Engineering		
E)	Analog Electronics and Sensing		
	Technology [Open Elective]		

Audit Course

- Audit Course: Optional for 1st and 2nd term of BE Electrical Engineering
- 'Audit Courses' means a Course in which the student shall be awarded Pass or Fail only. It is left to the discretion of the respective affiliated institute to offer such courses to the students. Evaluation of audit course will be done at institute level itself.
- Teaching-learning process for these subjects is decided by concern faculty/industry experts appointed by the affiliated Engineering College based on the syllabus and guidelines given.
- Marks obtained by student for audit course will not be taken into consideration of SGPA or CGPA.

Audit Course V 403152	(A) Hydro Energy Systems(B) Foreign Language – German
Audit Course VI 403153	Energy Storage Systems

Elective I: 403143 (B) : Power Quality

Teaching S	cheme
-------------------	-------

Theory	:	03 Hr/Week
Practical	:	02 Hr/Week

Credits	Examination	n Sche	eme [125 Marks]
03	In Sem	:	30 Marks
01	End Sem	:	70 Marks
	Term work	:	25 Marks

Prerequisite:

Fundamentals of Power system and Power electronics.

Course Objective: The course aims to:-

- Develop ability to identify various power quality issues, its sources and effects on various equipments.
- Monitor and analyze various power quality problems
- Describe and selection of cost effective power quality mitigation solutions.
- Explain use of power quality standards

Course Outcome: Upon successful completion of this course, the students will be able to:-

- 1. Identify importance of various power quality issues.
- 2. Carry out power quality monitoring
- 3. List and explain various causes and effects of power quality problems
- 4. Analyze power quality parameters and carry out power quality analysis
- 5. Select cost effective mitigation technique for various power quality problems
- 6. Use IEEE 519-2014 power quality standard for harmonic compliance

Unit 01 : Basics of power quality

Introduction and importance of power quality, symptoms of poor power quality. Classification of power quality events, power quality definition as per IEEE 1159.Grounding of sensitive electronic equipments and guidelines of IEEE std 1100.Long duration RMS voltage variations, its sources, effects and solutions.

Unit 02 : Voltage Sag

Sources of voltage sags, classification of voltage sags, factors governing severity of voltage sag. Area of vulnerability, critical distance. Voltage sag characteristics. Classification of equipments based on its sensitivity to various characteristics of voltage sag. Effect of voltage sag on various equipments. Voltage tolerance curve, ITIC and SEMI F47 curve, investigation of sensitivity of equipments to voltage sags. Voltage sag mitigation techniques at equipment level, LT power entrance and medium voltage. Voltage sag indices. Study of important provisions in IEEE Std 1346.

Unit 03 : Transient Overvoltage and Flicker

Sources of transient over voltages, Impulsive and oscillatory transients. Magnification of capacitor switching transients, pre insertion reactors to control capacitor switching transients, ferroresonance, principle of over voltage protection. Devices for over voltage protection. Voltage flicker, its sources. Factors governing severity of flicker. Flicker measurement, Pst and Plt. Flicker mitigation solutions.

Unit 04 : Fundamentals of Harmonics

Waveform Distortion, Harmonics, Harmonic phase sequences. Classification of harmonics harmonic, Voltage Verses Current distortion, AC quantities under non-sinusoidal conditions, Voltage and current harmonic indices, Sources of harmonics, General and special Effects of Harmonics on Electrical Equipments, cables, switchgears, Meters and Communications.

(06 Hrs)

(06 Hrs)

(**06 Hrs**)

Unit 05 : Harmonic Mitigation Techniques

System behaviour to harmonics, location of harmonic sources, Series and parallel resonance, Harmonic mitigation, passive tuned and detuned filters, design of tuned filters, Active Filter, Sizing and location of active filters, Advantages of active filters over passive filters, Hybrid filters. IEEE 519-2014 standard.

Unit 06 : Power Quality Monitoring

Objectives of Power quality monitoring. Types of power quality monitoring, Power quality monitoring equipments, Power quality analyser specification requirement as per EN50160 Standard. Selection of power quality equipments for cost effective power quality monitoring, selection of voltage and current transducers. Power quality indices. IEEE 1159 standard and important provision related with power quality monitoring. Computer Tools for analysis of power quality.

Guidelines for Instructor's Manual

Instructor's Manual shall have

- Brief relevant theory.
- Equipment with specifications.
- Connection diagram/ methodology.
- Format of observation table and sample results.

Guidelines for Student's Lab Journal

The Student's Lab Journal should contain following related to every experiment -

- 9. Theory related to the experiment.
- 10. Apparatus with their detailed specifications.
- 11. Connection diagram /circuit diagram.
- 12. Observation table/ simulation waveforms.
- 13. Sample calculations for one/two reading.
- 14. Result table.
- 15. Graph and Conclusions.
- 16. Few short questions related to the experiment.

Guidelines for Laboratory conduction

- Read and understand power quality analyzer manual completely.
- Make sure that connections of power analyzer are done as per manual.
- Follow safety protocols while doing power quality audit.

List of Experiments

Minimum 8 experiments are to be performed from the following list:

Compulsory experiments:

- 1. Study of power quality analyzer and measurement of voltage, current, power and power factor using it.
- 2. Measurement of harmonic distortion of various Equipments such as UPS /AC/DC drive
- 3. Harmonic compliance of institute as per IEEE 519-2014 standard and sizing of active filter.
- 4. Power quality audit of institute or department.

(06 Hrs)

Any 4 experiments from following list:

- 1. Harmonic analysis of transformer for various conditions (no load, inrush, full load etc.)
- 2. Analysis of performance of induction motor/transformer operated with sinusoidal supply and under distorted supply conditions supplied by 3 phase inverter.
- 3. Measurement of voltage sag magnitude and duration by using digital storage oscilloscope/ power quality analyzer.
- 4. Design of 7% detuned Passive Filter
- 5. Simulation study of transient and/or flicker measurement.
- 6. Simulation studies of harmonic generation sources such as VFD, SVC, STATCOM and FACTS devices and harmonic measurement (THD) by using professional software like MATLAB.
- 7. Harmonic load flow analysis by using professional software such as ETAP, PSCAD, ATP etc.

Text Books:

- [T1] R. C. Dugan, Mark F. McGranghan, Surya Santoso, H. Wayne Beaty, "Electrical Power System Quality", 2nd Edition, McGraw Hill Publication.
- [T2] M. H. J. Bollen, "Understanding Power Quality Problems, Voltage Sag and Interruptions", New York: IEEE Press, 2000, Series on Power Engineering.
- [T3] C.Sankaran "Power quality", CRC Press
- [T4] Arrillaga, M. R. Watson, S. Chan, "Power System Quality Assessment", John Wiley and Sons.

Reference Books:

- [R1] Enriques Acha, Manuel Madrigal, "Power System Harmonics: Computer Modeling and Analysis", John Wiley and Sons Ltd.
- [R2] Ewald F. Fuchs, Mohammad A. S. Masoum, "Power Quality in Power Systems and Electrical Machines" Elsevier Publication.
- [R3] G. J. Heydt, "Electric Power Quality", Stars in Circle Publications
- [R4] EN50160and IEEE 1100, 1346,519 and 1159 standards
- [R5] Arrillaga, M. R. Watson, "Power System Harmonics", John Wiley and Sons

Unit	Text Books	Reference Books
1	T1,T2, T3	R3, R4
2	T1,T2,T3	R2, R3, R4
3	T1,T2,T3	R2, R3
4	T1,T3,T4	R1, R4, R5
5	T1,T3,T4	R1, R4, R5
6	T1,T3	R1, R4

Elective II : 403144 (D) : Electric and Hybrid Vehicles

Teaching	g So	cheme	Cr	edits	Examinati	ion Scho	eme [100 Marks]
Theory	:	03 Hr/Week		03	In Sem	:	30 Marks
					End Sem	:	70 Marks

Prerequisite: Basic concept of Batteries, Electrical motors, Power electronic conversion

Course Objective: The course aims:-

- To make students aware the need and importance of Electric, Hybrid Electric Vehicles and • Fuel cell vehicle.
- To differentiate and analyze the various energy storage devices and battery charging and • management systems.
- To impart knowledge about architecture and performance of Electric and Hybrid Vehicles
- To classify the different drives and controls used in electric vehicles.

Course Outcome: Upon successful completion of this course, the students will be able to:-

- 1. Review history, Social and environmental importance of Hybrid and Electric vehicles.
- 2. Describe the performance and selection of energy storage systems and Analyze battery management system.
- 3. Distinguish between the performance and architecture of various drive trains.
- 4. Describe the different Instrumentation and Control used for electric vehicles.
- 5. Differentiate between Vehicle to Home, Vehicle to Vehicle and Vehicle to Grid energy systems concepts.

Unit 01 Introduction :

Conventional Vehicle: Basic of Vehicle performance, vehicle power source characterization, transmission characterization. Need and importance of transportation development. History of Electric Vehicle, Hybrid Electric Vehicle and Fuel cell Vehicle. Social and environmental importance of Hybrid and Electric vehicles. Impact of modern drive-trains on energy supplies.

Unit 02 : Energy Storage Systems

Introduction to energy storage requirements in Hybrid and Electric vehicles, battery-based energy storage and its analysis, Fuel cell based energy storage and its analysis, Ultra capacitor based energy storage and its analysis, flywheel based energy storage and its analysis. Hybridization of energy sources for Hybrid and Electric vehicle: - Hybridization of drive trains in HEVs, Hybridization of energy storage in EVs.

Selection of energy storage technology.

Unit 03 : Battery charging and Management systems

Introduction, charging algorithm, balancing method for battery pack charging. Battery management system representation: - battery module, measurement unit block, battery equalization balancing unit, MCU estimation unit, display unit, fault warning block. SoC and SoH, estimation of SoC, battery balancing, Thermal monitoring of Battery unit.

Unit 04 : Hybrid and Electric vehicles

Electric vehicles: - Components, configuration, performance, tractive efforts in normal driving, Advantages and challenges in EV design.

Hybrid Electric vehicles: - Concept and architecture of HEV drive train (Series, parallel and series-parallel). Energy consumption of EV and HEV

B.E. Electrical Engineering (2015 Course) – Savitribai Phule Pune University

(05 Hrs)

(06 Hrs)

(05 Hrs)

(07 Hrs)

Unit 05 : Drives and control systems

Drives: - Application of BLDC drives and Switched reluctance motor drive for HEV and EV, performance characteristics of drives.

Instrumentation and control system related to Hybrid and Electric vehicles, speed control, acceleration characteristics, Electric steering, motion control, braking mechanism, Vehicle tracking through GPS, over speed indicating systems, Auto-parking systems

Unit 06 : Vehicle to Home, Vehicle to Vehicle and Vehicle to Grid (06 Hrs) energy systems

Vehicle to Home(V2H): PHEV control Strategies to V2H applications, V2H with demand response.

Vehicle to Vehicle(V2V): - Concept and structure of EV aggregator, control method for EV aggregator for dispatching a fleet of EV.

Vehicle to Grid(V2G): - planning of V2G infrastructure in the smart grid, ancillary services provided by V2G, cost emission optimization.

Text Books:

- [T1] James Larminie and John Lowry, "Electrical Vehicle", John Wiley and Sons, 2012.
- [T2] Ronald K. Jurgen, "Electric and Hybrid-Electric Vehicles", SAE InternationalPublisher.
- [T3] K T Chau, "Energy Systems for Electric and Hybrid Vehicles", The institution of Engineering and Technology Publication
- [T4] D.A.J Rand, R Woods, R M Dell, "Batteries for Electric Vehicles", Research studies press Ltd, New York, John Willey and Sons
- [T5] Electric and Hybrid Vehicles-Design Fundamentals, CRC press
- [T6] Mark Warner, The Electric Vehicle Conversion handbook –HP Books, 2011.

Reference Books:

- [R1] Mehrdad Ehsani, Yimin Gao and Ali Emadi, "Modern Electrical Hybrid Electric and Fuel Cell Vehicles: Fundamental, Theory and design", CRC Press, 2009.
- [R2] Junwei Lu, Jahangir Hossain, "Vehicle-to-Grid: Linking Electric Vehicles to the Smart Grid", IET Digital Library.
- [R3] "Automobile Electrical and Electronic systems", Tom Denton, SAE International publications.
- [R4] "Automotive handbook 5th edition", Robert Bosch, SAE international publication.

Unit	Text Books	Reference Books
1	T1,T2,T3, T4, T5	R1
2	T1,T2,T3, T4, T5	R1, R3
3	T2,T3,T4	R1
4	T1,T2,T5	R1
5	T1,T2,T5	R1
6	T3	R2

Teaching Scheme		Credits	Examination Scheme [150 Mark		
Theory	: 03 Hrs./Week	03	In Sem	:	30 Marks
Practical	: 02 Hrs./Week	01	End Sem	:	70 Marks
			Oral	:	25 Marks
			Term work	:	25 Marks

Prerequisite: Atomic and molecular structure of gaseous and solid materials, basic properties of conductors and insulators, knowledge of material science.

Course Objective: The course aims to:-

- To enable students to know and compare the various processes of breakdown in solid, liquid and gaseous dielectric materials
- To enable students understand and apply various methods of generation and measurement of DC, AC, impulse voltage and current.
- To enable students to know the charge formation and separation phenomenon in clouds, causes of overvoltage and lightening phenomenon
- To develop ability among learners to execute testing on various high voltage equipments as per standards
- To introduce students to the design, layout, safety precautions, earthing, and shielding of HV laboratory.

Course Outcome: Upon successful completion of this course, the students will be able to

- 1. Identify, describe and analyze the breakdown theories of solid, liquid and gaseous materials
- 2. Describe as well as use different methods of generation of high AC, DC, impulse voltage and current.
- 3. Demonstrate and use different methods of measurement of high AC, DC, impulse voltage and current.
- 4. Identify the occurrence of overvoltage and to provide remedial solutions
- 5. Demonstrate an ability to carry out different tests on high voltage equipment and devices as well as ability to design the high voltage laboratory with all safety measures

Unit 01 : Breakdown in Gases

(06 Hrs)

Ionization process in gas, Townsend's Theory, current growth equation in presence of primary and secondary ionization processes, Townsend's breakdown criterion, primary and secondary ionization coefficients, limitations of Townsend's theory, Streamer mechanism of breakdown, Paschen's Law and its limitations, Corona discharges for point plane electrode combination with positive and negative pulse application, time lag and factors on which time lag depends. (Numerical on Townsend's theory and Paschen's law).

Unit 02 :

1. **Breakdown in Liquid Dielectrics:** Pure and commercial liquids, Different breakdown theories: Breakdown in Pure liquid and breakdown in commercial liquids: Suspended Particle theory, Cavitations and bubble theory, Thermal mechanism of breakdown and Stressed Oil volume theory

2. Breakdown in Solid Dielectrics: Intrinsic breakdown: electronic breakdown, avalanche or streamer breakdown, electro-mechanical breakdown, thermal breakdown, treeing and tracking phenomenon, Chemical and electrochemical breakdown, Partial discharge(Internal discharge), Composite dielectric material, Properties of composite dielectrics, breakdown in composite dielectrics. (Numerical on theories of liquid and solid dielectric materials)

Unit 03 : Generation of High Voltages and Current

a)Generation of high ac voltages-Cascading of transformers, series and parallel resonance system, Tesla coil

b)Generation of impulse voltages and current-Impulse voltage definition, wave front and wave tail time, Multistage impulse generator, Modified Marx circuit, Tripping and control of impulse generators, Generation of high impulse current

Unit 04 : Measurement of High Voltage and HighCurrents: (06 Hrs)

Sphere gap voltmeter, electrostatic volt meter, generating voltmeter, peak reading voltmeter, resistive, capacitive and mixed potential divider, capacitance voltage transformer, cathode ray oscilloscope for impulse voltage and current measurement, measurement of dielectric constant and loss factor, partial discharge measurements. Measurement of high power frequency a.c. using current transformer with electro-optical signal converter, Radio interference measurements.

Unit 05 : Lightning and Switching Over Voltages

Causes of over voltages, lightning phenomenon, Different types of lightening strokes and mechanisms of lightening strokes, Charge separation theories, Wilson theory, Simpson theory, Reynolds and Mason theory, Over voltage due to switching surges and methods to minimize switching surges. Statistical approach of insulation coordination

Unit 06 : High Voltage Testing of Electrical Apparatus and H V (06 Hrs) Laboratories:

a)Testing of insulators and bushings, Power capacitors and cables testing, testing of surge arresters.

b) Design, planning and layout of High Voltage laboratory:-Classification and layouts, earthing and shielding of H.V. laboratories.

Guidelines for Instructor's Manual

The Instructor's Manual should contain following related to every experiment

- Brief theory related to the experiment.
- Circuit diagram and apparatus with their detail specification as per IS code.
- Students should be encouraged to visit industries/HV laboratories/HV installations.
- Students should be encouraged to use virtual labs.
- Few short questions related to each practical.

Assignments based on use of IS and IEC

(06 Hrs)

(**06 Hrs**)

Guidelines for Student's Lab Journal

The Students lab journal should contain:

- Brief theory related to the experiment.
- Circuit diagram and apparatus with their detail specification as per IS code.
- Observations, result tables and proper inferences/ conclusion from each experiment conducted.
- Reports on visit to industries/HV laboratories/HV installations.
- Simulations and print outs of use of virtual labs.
- Few short questions and answers related to each practical.
- Assignments based on use of IS and IEC.

Guidelines for Laboratory conduction

- There should be continuous assessment for the TW.
- Assessment must be based on understanding of theory, attentiveness during practical.
- Session, how efficiently the student is able to do connections and get the results.
- Timely submission of journal.

List of Experiments

- 1. To find the constants of breakdown equation of transformer oil.(Analytical and graphical method)
- 2. Measurement of unknown high a.c. voltage using sphere gap
- 3. To obtain breakdown strength of composite insulation system, and observe the effect of parameter like no. of layers, thickness of layer, effect of interfacing.
- 4. To find out the breakdown of air in uniform and non uniform field and compare it.
- 5. To study surface flashover on corrugated porcelain/polymeric insulation system.
- 6. To understand basic principle of corona and obtain audible and visible corona inception and extinction voltage under non uniform field.
- 7. To perform experiment on horn gap arrestor and understand arc quenching phenomenon.
- 8. To observe development of tracks and trees on polymeric insulation system.
- 9. Parametric analysis of Impulse current generator using virtual Laboratory.
- 10. To perform experiment on rod gap arrestor.
- 11. To Study effect of barrier on breakdown voltage of air/ transformer oil.
- 12. Simulation of lightening and switching impulse voltage generator using any simulation software.
- 13. To perform various HV insulation tests on cables as per IS.
- 14. Study of layout /earthing/safety of HV installation /lab in any industry by visit /virtual lab
- 15. Study of any IS for any power apparatus (Power Transformer/Induction Motor/ Alternator etc)

Industrial Visit: Industrial visit to high voltage equipment manufacturing industry/EHV substation/High Voltage Testing Unit.

Text Books:

- [T1] M. S. Naidu, V. Kamaraju, "High Voltage Engineering", Tata McGraw Hill Publication Co. Ltd. New Delhi
- [T2] C. L. Wadhwa, "High Voltage Engineering", New Age International Publishers Ltd.

Reference Books:

- [R1] E. Kuffel, W. S. Zaengl, J. Kuffel, "High Voltage Engineering Fundamentals", Newnes Publication
- [R2] Prof. D. V. Razevig Translated from Russian by Dr. M. P. Chourasia, "High Voltage Engineering", Khanna Publishers, New Delhi
- [R3] Ravindra Arora, Wolf Gang Mosch, "High Voltage Insulation Engineering", New Age International
- [R4] High Voltage Engineering Theory and Practice by M. Khalifa Marcel Dekker Inc. New York and Basel.
- [R5] Subir Ray, "An Introduction to High voltage Engineering" PHI Pvt. Ltd. New Delhi
- [R6] NPTEL lectures
- [R7] IS 731-1971:Porcelain insulator for overhead power lines with nominal voltage > 1000 Volt
- [R8] Bushings :IS2099-1986, specification for bushings for A.C. Voltages > 1000 Volts
- [R9] Pollution test :IEC 60507-1991 on external and internal insulator
- [R10] High voltage test techniques, general definitions and test requirements: IS 2071(part 1) 1993,IEC Pub 60-1(1989)

Unit	Text Books	Reference Books
1	T1,T2	R1,R2,R3,R6
2	T1,T2	R1,R2,R3,R5,R6
3	T1,T2	R1,R2,R3,R5,R6
4	T1,T2	R1,R2,R3,R4,R5,R6
5	T1,T2	R1,R2,R3,R4,R5,R6
6	T1,T2	R1,R2,R3,R7,R8,R9,
		R10

Teaching Scheme	Credit	Examination Scheme [100 Marks]		
Theory : 03 Hrs / Week	03	In Sem	: 30 Marks	
		End Sem	: 70 Marks	

Prerequisite: Knowledge of power system and power electronics

Course Objective: The course aims:-

- To explain the concept of Smart Grid, compare with conventional grid, and identify its opportunities and barriers.
- To describe the concept of Smart Meter, Smart Appliances, Automatic Meter Reading, Outage Management System, Plug in Hybrid Electric Vehicles, Vehicle to Grid, Smart Sensors, Home and Building Automation, Phase Shifting Transformers.
- To elaborate the concept of Substation Automation, Feeder Automation. Intelligent Electronic Devices, Smart storage like Battery, Pumped Hydro, Compressed Air Energy Storage, Wide Area Measurement System, Phase Measurement Unit.
- To elaborate the concept of microgrid
- To acquaint Power Quality issues of Grid connected Renewable Energy Sources, Web based Power Quality monitoring, Power Quality Audit.

Course Outcome:

- 1. Apply the knowledge to differentiate between Conventional and Smart Grid.
- 2. Identify the need of Smart Grid, Smart metering, Smart storage, Hybrid Vehicles, Home Automation, Smart Communication, and GIS
- 3. Comprehend the issues of micro grid
- 4. Solve the Power Quality problems in smart grid
- 5. Apply the communication technology in smart grid

Unit 01 : Introduction to Smart Grid:

Concept of Smart Grid, Need of Smart Grid, Functions of Smart Grid, Opportunities and Barriers of Smart Grid, Drivers of SG in India, Functionalities and key components of smart grid, Difference between conventional and smart grid, Smart Grid Vision and Roadmap for India, Concept of Resilient and Self-Healing Grid, Present development and International policies in Smart Grid, Smart Cities, Pilot projects in India.

Unit 02 : Smart Grid Technologies

Remote Terminal Unit (RTU):Block diagram and function of each block, Intelligent Electronic Devices (IED), Phase Measurement Unit (PMU). Smart Substations, Substation and Feeder Automation, application for monitoring, protection and control, Plug in Hybrid Electric Vehicles(PHEV), Vehicle to Grid(V2G), Grid to vehicles(G2V), Smart storage technologies and applications – Battery(flow and advanced), SMES, Super Capacitors, Compressed Air Energy Storage(CAES) and its comparison, Optimal location of PMUs for complete Observability.

(06 Hrs)

Introduction to Smart Meters, Advanced Metering Infrastructure (AMI), Real Time Prizing, Automatic Meter Reading (AMR), Outage Management System (OMS) Smart Sensors, Smart

Concept of Microgrid, need and applications of Microgrid, Microgrid Architecture, DC Microgrid, Formation of Microgrid, Issues of interconnection, protection and control of Microgrid, Integration of renewable energy sources, Smart Microgrid, Microgrid and Smart Grid Comparison, Smart Microgrid Renewable Green Energy System, Cyber Controlled Smart Grid.

Unit 05 : Power Quality Management in Smart Grid (06 Hrs)

Power Quality and EMC in Smart Grid, Power Quality issues of Grid connected Renewable Energy Sources, Power Quality Conditioners for Smart Grid, Web based Power Quality monitoring, Power Quality Audit.

Unit 06 : Communication Technology for Smart Grid (06 Hrs)

Communication Architecture of SG, Wide Area Measurement System (WAMS), Home Area Network (HAN), Neighbourhood Area Network (NAN), Wide Area Network (WAN)., ZigBee, GPS, Wi-Fi, Wi-Max based communication, Wireless Mesh Network, Basics of CLOUD Computing and Cyber Security for Smart Grid, Broadband over Power line (BPL).

Text Books:

Unit 04

: Microgrids:

- [T1] Ali Keyhani, Mohammad N. Marwali, Min Dai "Integration of Green and Renewable Energy in Electric Power Systems", Wiley
- Clark W. Gellings, "The Smart Grid: Enabling Energy Efficiency and Demand [T2] Response", CRC Press
- [T3] Janaka Ekanayake, Nick Jenkins, Kithsiri Liyanage, Jianzhong Wu, Akihiko Yokoyama, "Smart Grid: Technology and Applications", Wiley Publications.
- Stuart Borlase, "Smart Grids-Infrastructure, Technology and Solutions", CRC Press, [T4] Taylor and Francis group
- James Momoh, "Smart Grid-Fundamentals of design and analysis", Wiley [T5] Publications.

Reference Books:

- Nikos Ziargyriour, "Micro grid, Architecture and Control", IEEE Press, Wiley [R1] Publications.
- [R2] Yang Xiao, "Communication and Networking in Smart Grids", CRC Press, Taylor and Francis group
- Lars T. Berger and Krzysztof Iniewski, "Smart Grid-Applications, Communications [R3] and Security", Wiley Publications.
- Mladen Kezunovic, Mark G. Adamiak, Alexander P. Apostolov, Jeffrey George Gilbert [R4] "Substation Automation (Power Electronics and Power Systems)", Springer Publications.
- [R5] Smart grid handbook for regulators and policy makers November 2017, ISGF

Unit 03 : Smart Meters and Advance Metering Infrastructure:

Appliances, Home and Building Automation, Geographic Information System (GIS).

(06 Hrs)