Savitribai Phule Pune University

Faculty of Science and Technology

Syllabus for

T.E (Electronics & Telecommunication Engineering)

(Course 2019)

(w.e.f. June 2021)

	Savitribai Phule Pune University, Pune T.E. (Electronics& Telecommunication Engineering) 2019 Course (With effect from Academic Year 2021-22)													
			1	Seme	ester	-V								
Course		Tea Sc (Hour	Teaching SchemeExamination Scheme and Marks(Hours/Week)					nd	Credit					
Code	Course Name	Theory	Practical	Tutorial	In-Sem	End-Sem	ΤW	PR	OR	Total	ΗT	PR	TUT	Total
304181	Digital Communication	03	-	-	30	70	-	-	-	100	03	-	-	03
304182	Electromagnetic Field Theory	03	-	01	30	70	25	-	-	125	03	-	01	04
304183	Database Management	03	-	-	30	70	-	-	-	100	03	-	-	03
304184	Microcontrollers	03	-	-	30	70	-	-	-	100	03	-	-	03
304185	Elective - I	03	-	-	30	70	-	-	-	100	03	-	-	03
304186	Digital Communication Lab	-	02	-	-	-	-	50	-	50	-	01	-	01
304187	Database Management Lab	I	02	-	-	-	I	-	25	25	-	01	-	01
304188	Microcontroller Lab	-	02	-	-	-	-	50	-	50	-	01	-	01
304189	Elective I Lab	-	02	-	-	-	-	25	-	25	-	01	-	01
304190	Skill Development	-	02	-	-	-	25	-	-	25	-	01	-	01
304191A	Mandatory Audit Course 5 &	-	-	-	-	-	-	-	-	-	-	-	-	-
	Total	15	10	01	150	350	50	125	25	700	-		-	-
		L				J	Fotal C	Credit		1	15	05	01	21

Elective -I

- 1) Digital Signal Processing
- 2) Electronic Measurements
- 3) Fundamentals of JAVA Programming
- 4) Computer Networks

	Savitr T.E. (Electronics& (With	ibai Tele effee	Phu com ct fro	le Pu imun m Aca	ine U icati adem	Jnive ion E nic Ye	ersit ngi ar 20	y, Pu neeri 021-2	ine ng) 2 2)	019 (Cours	e		
			5	Semes	ster-	VI								
Course		T S (Ho	Teaching Scheme (Hours/Week)		Examination Scheme and Marks					nd	Credit			
Code	Course Name		Practical	Tutorial	In-Sem	End-Sem	ΜT	PR	OR	Total	НТ	PR	TUT	Total
304192	Cellular Networks	03	-	-	30	70	-	-	-	100	03	-	-	03
304193	Project Management	03	-	-	30	70	-	-	-	100	03	-	-	03
304194	Power Devices & Circuits	03	-	-	30	70	-	-	-	100	03	-	-	03
304195	Elective-II	03	-	-	30	70	-	-	-	100	03	-	-	03
304196	4196 Cellular Networks Lab		02	-	-	-	-	-	50	50	-	01	-	01
304197	Power Devices & Circuits Lab	-	02	-	-	-	-	50	-	50		01		01
304198	Elective-II Lab	-	02	-	-	-	-	25	-	25	-	01	-	01
304199	Internship**	-	-	-	-	-	100	-	-	100	-	-	04	04
304200	Mini Project	-	04	-	-	-	25	-	50	75	-	02	-	02
304191 B	Mandatory Audit Course 6 &	-	-	-	-	-	-	-	-	-	-	-	-	-
	Total	12	10	00	120	280	125	75	100	700				
			I	I		Т	otal	Credi	t		12	05	04	21
Abbreviations:In-Sem: In semesterEnd-Sem: End semesterTH: TheoryTW : Term WorkPR: PracticalOR: OralTUT: Tutorial														

Note: Students of T.E. (Electronics & Telecommunications) have to opt any one of the audit course from the list of audit courses prescribed by BoS (Electronics & Telecommunications Engineering)

Elective -II

- 1) Digital Image Processing
- 2) Sensors in Automation
- 3) Advanced JAVA Programming
- 4) Embedded Processors
- 5) Network Security

S	avitribai Phule Pur	ne University						
Third Year of E & Tc Engineering (2019 Course)								
304185 (C): Fundamentals of JAVA Programming (Elective - I)								
Teaching Scheme:	Credit	Examination S	cheme:					
Theory: 03 hrs. / week	03	In-Sem (Theory): 30	Marks					
	End Sem (Theory): 70 Marks							
Prerequisite Courses, if any:								
1. Data Structures								
2. Object Oriented Programming c	oncept							
Companion Course, if any: F	undamentals of JAVA Pro	gramming Lab						
Course Objectives:								
• Make the students familiar	with basic concepts and te	chniques of object oriented pro	gramming in Java.					
• Develop an ability to write	various programs in Java	for problem solving.						
Course Outcomes: On completion	of the course, learner will	be able to -						
CO1: Understand the basic princip	ples of Java programming	language						
CO2: Apply the concepts of classe	es and objects to write prog	grams in Java						
CO3: Demonstrate the concepts of	methods & Inheritance							
CO4: Use the concepts of interfac	es & packages for progran	n implementation						
CO5: Understand multithreading	and Exception handling in	Java to develop robust program	IS					
CO6: Use Graphics class, AWT p.	ackages and manage input	and output files in Java						
	Course Con	tents						
Unit I	JAVA Fur	damentals	(08 Hrs.)					
Review of Object oriented concept	s, Evolution of Java, Com	parison of Java with other progr	amming languages,					
Java features, Java and World Wi	de Web, Java Run Time B	Environment. JVM architecture	. Overview of Java					
Language, Simple Java Program, Java Program Structure. Installing and Configuring Java.								
Java Tokens, Java Statements, Constants, variables, data types. Declaration of variables, Giving values to								
variables, Scope of variables, arrays, Symbolic constants, Typecasting, Getting values of variables, Standard								
default values, Operators, Expressions, Type conversion in expressions, Operator precedence and associatively,								
Mathematical functions, Control statements- Decision making & looping.								
Mapping of Course CO1: U	Understand the basic pri	nciples of Java programming	glanguage.					
Outcomes for Unit I								

Unit II	Classes and Objects	(06 Hrs.)					
Class Fundamentals, Cre	ating Objects, Accessing Class members, Assigning Object re	ference variables,					
Methods, Constructors, us	Methods, Constructors, using objects as parameters, Argument passing, returning objects, Method Overloading,						
static members, Nesting of	Methods, this keyword, Garbage collection, finalize methods,, fir	al variables and					
methods, final class.							
Mapping of Course	CO2: Apply the concepts of classes and objects to write progra	ums in Java					
Outcomes for Unit II							
Unit III	Methods & Inheritance in JAVA	(06 Hrs.)					
Abstract Methods and cl	lasses, Strings ,One dimensional and two dimensional arrays ,	wrapper classes,					
enumerated types, Comma	and line arguments						
Inheritance: Inheritance	in Java, Creating Multilevel hierarchy, Constructors in deriv	ed class, Method					
overriding, Dynamic meth	od dispatch.						
Mapping of Course	CO3: Demonstrate the concepts of methods & Inheritance.						
Outcomes for Unit III							
Unit IV	Interfaces & Packages	(06 Hrs.)					
Interfaces: Define, impl	ement and extend, Accessing Interface variables, Default interface	e methods, Using					
static method in interface							
Packages: Java API Pac	kages Using System Packages Creating accessing and using a pa	ackage Importing					
packages, Adding a class t	o a Package, Hiding classes.						
Mapping of Course	CO4: Use the concept of interfaces & packages for program im	plementation.					
Outcomes for Unit IV		-					
Unit V	Multithreading & Exception Handling	(06 Hrs.)					
Introduction to multithread	ding: Introduction, Creating thread and extending thread class. Conc	ept of Exception					
handling: Introduction, Ty	pes of errors, Exception handling syntax, Multiple catch statements						
I/O basics, Reading console inputs, Writing Console output. Applets: Concepts of Applets, differences between							
applets and applications, li	fe cycle of an applet, types of applets, creating a simple applet.						
Mapping of Course	CO5: Understand multithreading and Exception handling in	n Java to develop					
Outcomes for Unit V	robust programs						

Unit VI	Graphics Programming and File Handling	(06 Hrs.)
Graphics class, Introduction	on to AWT packages, Handling events on AWT components, Intro	duction to Swing
package, components and	containers.	
Managing input/output	files: Concept of streams, Stream Classes, Byte stream, Character	ter stream, Using

Stream, creation of files, reading or writing characters / bytes, Concatenating and buffering files, Random access files.

MappingofCourseCO6: Use Graphics class, AWT packages and manage input and output files inOutcomes for Unit VIJava

Learning Resources

Text Books:

1. E Balagurusamy, "Programming with JAVA", Tata McGraw Hill, 6th Edition.

2. Herbert Schildt, "Java: The complete reference", Tata McGraw Hill, 7th Edition.

Reference Books:

- 1. T. Budd, "Understanding OOP with Java", Pearson Education, 2nd Updated Edition.
- 2. Y. Daniel Liang (2010), "Introduction to Java programming", Pearson Education, India, 7th Edition.
- 3. Cay Horstmann, "Core Java Volume 1", Kindle, 11th Edition.

MOOC / NPTEL Courses:

1. NPTEL Course "Programming in Java"

Link of the Course: https://nptel.ac.in/courses/106/105/106105191/

Savitribai Phule Pune University										
Third Year of E & Tc Engineering (2019 Course)										
30	304189 (C): Fundamentals of JAVA Programming Lab (Elective - I)									
Teac	Teaching Scheme:CreditExamination Scheme:									
Practical	Practical: 02 hrs. / week 01 Practical: 25 Marks									
Prerequisi	ite Courses, if any: - K	nowledge of Object O	riented Programming							
Companio	n Course, if any: Fund	damentals of JAVA Pro	ogramming							
	Li	st of Laboratory E	xperiments							
	C									
	G	roup A (All are Co	ompulsory)							
1.	Write some simple prog	grams in Java such as:								
	i) To find factorial of 1	number.								
	ii) To display first 50 p	orime numbers.								
	111) To find sum and ave	erage of N numbers								
2.	Write a program in Ja	va to implement a Calcu	alator with simple arithmetic operations such as							
	add, subtract, multiply,	divide, factorial etc. usi	ig switch case and other simple java statements.							
	The objective of this as	signment is to learn Cons	tants, Variables, and Data Types, Operators and							
	Expressions, Decision i	making statements in Jav								
3.	Write a program in Jav	a with class Rectangle wi	th the data fields width, length, area and colour.							
	The length, width and	area are of double type	and colour is of string type. The methods are							
	get_length(), get_widt	h(), get_colour() and find	id_area(). Create two objects of Rectangle and							
	compare their area an	d colour. If the area and	a colour both are the same for the objects then							
1	display Matching Rec	tangles", otherwise displ	ay Non-matching Rectangle							
4.	write a program in JA	VA to demonstrate the mo	ethod and constructor overloading							
		Group B (Any	Four)							
5	Write Programs in Ja	va to sort i) List of inte	egers ii) List of names. The objective of this							
	assignment is to learn A	Arrays and Strings in Java	l							
6.	Write a Program in Jav	a to add two matrices. Th	e objective of this assignment is to learn Arrays							
	in Java									
7.	Write a program in	Java to create a play	ver class. Inherit the classes Cricket_player,							
	Football_player and H	lockey_player from play	er class. The objective of this assignment is to							
	learn the concepts of in	heritance in Java.								
8.	Write a Java program	which imports user de	fined package and uses members of the classes							
	contained in the packag									
9.	Write a Java program v	which implements interfa	ce.							

10	Write a program to create multiple threads and demonstrate how two threads communicate with							
	each other.							
	Group C (Any Three)							
11.	Write a java program which use try and catch for exception handling.							
12.	Write a Java program to draw oval, rectangle, line, text using graphics class							
13.	Write a java program in which data is read from one file and should be written in another file line by line.							
14.	A Mini project in Java: A group of 4 students can develop a small application in Java							
Virtual Lin	Virtual LAB Links: Link of the Virtual Lab: https://iava-iitd.vlabs.ac.in/							

Note: Additional 2 experiments to be performed using the virtual labs.

	Savitribai Phule Pur	e University							
Third Year of F & TC Engineering (2019 Course)									
304195 (C): Advanced JAVA Programming (Elective - II)									
Teaching Scheme:	Teaching Scheme:CreditExamination Scheme:								
Theory: 03 hrs. / week	3 hrs. / week 03 In-Sem (Theory): 30 Marks								
		End Sem (Theory): 70	Marks						
Prerequisite Courses, if any	:								
1. Fundamentals of Java Prog	ramming								
Companion Course, if any:	Advanced JAVA Programm	ing Lab							
Course Objectives: Make the le	earner to:								
• Design and develop GU	UI applications using Abstra	ct Windowing Toolkit (AWT),	Swing and Event						
Handling.									
• Design and develop Wel	b applications								
Designing Enterprise ba	sed applications by encapsula	ting an application's business lo	gic.						
• Designing applications u	using pre-built frameworks.								
Course Outcomes: On completing	ion of the course, learner will	be able to –							
CO1: Design and develop GUI a	applications using Applets.								
CO2: Apply relevant AWT/ swi	ng components to handle the	given event.							
CO3: Design and develop GUI a Handling.	applications using Abstract W	indowing Toolkit (AWT), Swin	g and Event						
CO4: Learn to access database the	hrough Java programs, using	Java Database Connectivity (JD	BC)						
CO5: Invoke the remote method	ls in an application using Ren	note Method Invocation (RMI)							
CO6: Develop program for clien	nt /server communication usin	ng Java Networking classes.							
	Course Cont	tents							
Unit I	Ар	plet	(06 Hrs.)						
Applet Basics – Introduction,	limitations of AWT, Apple	et architecture – HTML APPL	ET tag – Passing						
parameter to Appletget, Docum	nentBase() and getCodeBase(), Japplet: Icons and Labels Te	ext Fields Buttons,						
Combo Boxes , Checkboxes, Tabbed Panes, Scroll Panes, Trees: Tables									
Mapping of Course CO1: Design and develop GUI applications using Applets.									
Outcomes for Unit I									

	Un	it II	Eve	ent Har	ndling	using	AWT	/Swi	ng co	mpo	nents	(08	Hrs.)
Event	Hand	ling: Even	ts, Even	t sources,	Event	classes,	Event 1	Listen	ers, De	elegati	on event	model,	handling
mouse	and	keyboard	events,	Adapter	classes,	inner	classes.	The	AWT	class	hierarch	y, user	interface

components- labels, button, canvas, scrollbars, text components, checkbox, checkbox groups, choices, lists panels – scroll pane, dialogs, menu bar, graphics, layout manager – layout manager types – boarder, grid, flow, card and grib bag.

MappingofCourseCO2: Apply relevant AWT/ swing components to handle the given event.Outcomes for Unit II

Unit III

GUI Programming

(06 Hrs.)

Designing Graphical User Interfaces in Java, Components and Containers, Basics of Components, Using Containers, Layout Managers, AWT Components, Adding a Menu to Window, Extending GUI Features Using Swing Components, Java Utilities (java.util Package) The Collection Framework: Collections of Objects, Collection Types, Sets, Sequence, Map, Understanding Hashing, and Use of Array List & Vector.

Mapping of Course	CO3: Design and develop GUI applications using Abstract Windowing Toolkit
Outcomes for Unit III	(AWT), Swing and Event Handling.

Unit IV	Database Programming using JDBC	(06 Hrs.)

The Concept of JDBC, JDBC Driver Types & Architecture, JDBC Packages, A Brief Overview of the JDBC process, Database Connection, Connecting to non-conventional Databases Java Data Based Client/server, Basic JDBC program Concept, Statement, Result Set, Prepared Statement, Callable Statement, Executing SQL commands, Executing queries

Mapping of Course	CO4: Learn to access database through Java programs, using Java Database
Outcomes for Unit IV	Connectivity (JDBC).

Unit V	Remote Method Invocation (RMI)	(06 Hrs.)

Remote Method Invocation: Architecture, RMI registry, the RMI Programming Model; Interfaces and Implementations; Writing distributed application with RMI, Naming services, Naming and Directory Services, Setting up Remote Method Invocation – RMI with Applets, Remote Object Activation; The Roles of Client and Server, Simple Client/Server Application using RMI.

Mapping of CourseCO5: Invoke the remote methods in an application using Remote MethodOutcomes for Unit VInvocation (RMI)

Unit VI	Networking	(08 Hrs.)			
The java.net package, Con	nnection oriented transmission – Stream Socket Class, creating a	Socket to a remote			
host on a port (creating TC	CP client and server), Simple Socket Program Example.				
InetAddress, Factory Methods, Instance Methods, Inet4Address and Inet6Address, TCP/IP Client Sockets.					
URL, URLConnection, H	ttpURLConnection, The URI Class, Cookies, TCP/IP Server So	ockets, Datagrams,			
DatagramSocket, Datagram	mPacket, A Datagram Example.				

Connecting to a Server, Implementing Servers, Sending EMail, Servlet overview – the Java web server – The						
Life Cycle of a Servlet, your first servlet.						
Mapping of Course	CO6: Develop program for client /server communication using Java					
Outcomes for Unit VI	Networking classes.					

Learning Resources

Text Books:

- 1. Herbert Schildt, "Java: The complete reference", Tata McGraw Hill, 7th Edition
- 2. Jim Keogh, "Complete Reference J2EE", Enterpr
- 3. E. Balaguruswamy, "Programming with JAVA: A Primer" McGraw Hill Education, India, 5th Edition.

Reference Books:

- 1. "Java 6 Programming", Black Book, Dreamtech
- 2. "Java Server Programming, Java EE6 (J2EE 1.6)", Black Book, Dreamtech
- 3. M.T. Savaliya,"Advanced Java Technology", Dreamtech

MOOC / NPTEL Courses:

1. NPTEL Course "Programming in Java"

Link of the Course: https://nptel.ac.in/courses/106/105/106105191/

2. Udemy course "Advanced Java Programming"

Link of the Course: https://www.udemy.com/course/advanced-java-programming

	Savitribai Phule Pune University								
Third Year of E & TC Engineering (2019 Course)									
304198 (C): Advanced JAVA Programming Lab (Elective – II)									
Teac	ching Scheme:	Credit	Examination Scheme:						
Practica	l: 02 hrs. / week	01	Practical: 25 Marks						
Prerequis	Prerequisite Courses, if any:								
1.Fundam	entals of Java Program	ning anced IAVA Program	ming						
	L	ist of Laboratory	Experiments						
	(Froup A (All are C	Compulsory)						
1.	Write a program to	demonstrate status of	key on an Applet window such as KeyPressed,						
	KeyReleased, KeyUp, I	KeyDown.							
2.	Write a program to cr mouseExited() events.	eate a frame using AW Frame should become y	T. Implement mouseClicked, mouseEntered() and sible when the mouse enters it.						
3.	Develop a GUI which a	ccepts the information	regarding the marks for all the subjects of a student						
	in the examination. Dis	play the result for a stud	ent in a separate window.						
4.	Write a program to inse	ert and retrieve the data f	rom the database using JDBC.						
5.	Develop an RMI applic is palindrome or not.	ation which accepts a st	ring or a number and checks that string or number						
6.	Write a program to den	nonstrate the use of InetA	Address class and its factory methods.						
		Group B (An	y Two)						
7.	A. Write Servlet (proce the client.	dure for client side) to c	lisplay the username and password accepted from						
	B. Write Servlet (proce the client.	dure for server side) to o	display the username and password accepted from						
8.	Write program with sui	table example to develo	p your remote interface, implement your						
	RMI server, implement	application that create y	our server, also develop security policy						
	file.								
9.	Write a database applic	ation that uses any JDB	C driver.						
Group C (Any Two)									
10.	Write a simple JSP pag	e to display a simple me	ssage (It may be a simple html page).						
11.	Create login form and perform state management using Cookies, HttpSession and URL Rewriting.								
12.	Create a simple calcula	tor application using ser	vlet.						
13.	Create a registration ser	vlet in Java using JDBC	C. Accept the details such as Username, Password,						
	Email, and Country fr database.	om the user using HT	ML Form and store the registration details in the						
	1								

Savitribai Phule Pune University Faculty of Science & Technology

B.E. (Electronics & Telecommunication) (2015 Pattern) Syllabus

(With effect from Academic Year 2018-19)

Savitribai PhulePune University Final Year E&TC Engineering (2015 Course) (With effect from Academic Year 2018-19)

Semester I												
Course	Teaching Scheme Hours / Week			Semester Examination Scheme of Marks					Credits			
Code		Theor y	Tut	Pract	In- Sem	End- Sem	TW	PR	OR	Total	TH/TW	PR+OR
404181	VLSI Design& Technology	3			30	70				100	3	
404182	Computer Networks & Security	4			30	70				100	4	
404183	Radiation & Microwave Techniques	3			30	70				100	3	
404184	Elective I	3			30	70				100	3	
404185	Elective II	3			30	70				100	3	
404186	Lab Practice -I (CNS+ RMT)			4			50		50	100		2
404187	Lab Practice -II (VLSI + Elective I)			4			50	50		100		2
404188	Project Stage I	-	2				-		50	50		2
	Audit Course 5										-	
	Total	16	2	8	150	350	100	50	100	750	16	6
Total Credits					1				22			
Elective I												
1 Digital Image and Video			<u>Elec</u>	ctive II					Audit Course 5			
Processing 1.			1. W	1. Wavelets						1. Green Energy		
2. Industrial Drives and Control			2. Electronics Product Design						2. Human Behaviour			
3. Embedded Systems & RTOS			3.0	ptimiz	ation T	Technic	ques					
4. Inter	rnet of Things		4. A	rtificia	l Intell	ligence	;					
			5. E	lectron	ics in a	agricul	ture					

Final Year E&TC Engineering (2015 Course) (With effect from Academic Year 2018-19)

Semester II													
		Teachi	Teaching Scheme Semester Examina					tion Sc	heme of				
		Hours / Week			Marks						Cre	Credit	
Course Code	Course	Theory	Tut	Pract	In- Sem	End- Sem	TW	PR	OR	Total	TH/TW	PR+OR	
404189	Mobile Communication	3			30	70				100	3		
404190	Broadband Communication Systems	4			30	70				100	4		
404191	Elective III	3			30	70				100	3		
404192	Elective IV	3			30	70				100	3		
404193	Lab Practice –III (MC+BCS)			4			50	50		100		2	
404194	Lab Practice –IV (Elective III)			2					50	50		1	
404195	Project Stage II		6	-			150		50	200		6	
	Audit Course 6												
	Total	13	6	6	120	280	200	50	100	750	13	9	
						Tota	l Credits	2	2				
Elective IIIElective-IVAud1. Machine Learning1. Robotics1. T2. PLC s and Automation2. Biomedical ElectronicsFitm3. Audio and Speech Processing3. Wireless Sensor Networks2. E4. Software Defined Radio4. Renewable Energy SystemsDisa5. Audio Video Engineering5. Open Elective*I					Audit 1. Tea Fitness 2. Env Disast	Course 6 m Buildir s ironmenta er Manag	2 ng, Leader al issues a ement	ship and nd					

*Any one course from the list of Elective IV of computer/IT/Electrical/Instrumentation or Institute can offer elective IV based on any industry need with prior approval from BoS(Electronics & Telecommunication). Repetition of course or topics should be avoided.

Teaching Scheme: Examination Scheme: Lecture : 03 Hr/Week **In-Sem: 30 Marks** End-Sem: 70 Marks **Course Objectives:** Understand the fundamental concepts of Digital Image Processing with basic relationship of • pixels and mathematical operations on 2-D data. Learn design and integrate image enhancement and image restoration techniques • • Understand object segmentation and image analysis techniques Learn the need for effective use of resources such as storage and bandwidth and ways to provide effective use of them by data compression techniques • Learn basic concepts of video processing **Course Outcomes:** On completion of the course, student will be able to 1. Develop and implement basic mathematical operations on digital images. 2. Analyze and solve image enhancement and image restoration problems. 3. Identify and design image processing techniques for object segmentation and recognition. 4. Represent objects and region of the image with appropriate method. 5. Apply 2-D data compression techniques for digital images. 6. Explore video signal representation and different algorithm for video processing. **Unit I : Fundamentals of Image Processing** 5 Hrs Steps in Image processing, Human visual system, Sampling & quantization, Representing digital images, spatial and gray level resolution, Image file formats, Basic relationships between pixels, Distance Measures, Basic operations on images - image addition, subtraction, logical operations, scaling translation, rotation. Color fundamentals and models - RGB, HIS, YIQ **Unit II : Image Enhancement and Restoration** 8 Hrs Point – Log transformation, Power law transformation, Piecewise linear transformation, Image histogram, histogram equalization, Mask processing of images, filtering operations- Image smoothing, image sharpening, frequency domains image enhancement: 2D DFT, smoothing and sharpening in frequency domein, Pseudo coloring. Image Restoration: Noise models, restoration using Inverse filtering and Wiener filtering **Unit III : Image Compression** 6 Hrs Types of redundancy, Fidelity criteria, Compression models - Information theoretic perspective -Fundamental coding theorem, Lossless Compression: Huffman Coding- Arithmetic coding. Introduction to DCT, Lossy compression: DCT based compression, Wavelet based compression, Image compression standards JPEG and JPEG 2000. **Unit III : Image Segmentation** 8 Hrs Pixel classification, Bi-level thresholding, Multi-level thresholding, Adaptive thresholding, Otsu's method, Edge detection - First order derivative Prewitt and Sobel, Second order derivative - LoG, DoG, Canny. Edge linking, Hough transform, Region growing and region merging. Morphological operators: Dilation, Erosion, Opening, Closing, Hit or Miss transform, Boundary detection, Thinning, Thicking, Skelton.

404184 Digital Image and Video Processing (Elective-I) Credits: 03 Unit V : Representation and Description

Representation – Chain codes, Polygonal approximation, Signatures, Boundary descriptors, Shape numbers, Fourier descriptors, Stastical moments, Regional descriptors – Topological, texture, Principal components for description

5 Hrs

Unit VI : Video Processing

6 Hrs

Fundamental Concepts in Video – Types of video signals, Analog video, Digital video, Color models in video, Motion Estimation; Video Filtering; Video Compression, Video coding standards MPEG.

Text Books:

1. Gonzalez and Woods, "Digital Image Processing", Pearson Education, 3rd edition

2. Iain E. G. Richardson, "H.264 and MPEG

3. Video Compression: Video Coding for Next Generation Multimedia", John Wiley and Son's Publication, 3rd Edition.

Reference Books:

1. A. K. Jain, Fundamentals of digital image processing, Prentice Hall of India, 1989.

2. Pratt William K. "Digital Image Processing", John Wiley & sons

3. A. Bovik, Handbook of Image & Video Processing, Academic Press, 2000

404184	Industrial l	Drives and Control (Elective-I)				
	Cree	lits: 03				
Teaching Scheme: Examination Scheme:						
Lecture : 3Hours / Week		In-Sem : 30 Marks End-Sem: 70 Marks				
 Course Objectives: Describe the structure of the structu	of Electric Drive s	ystems and their role in various applications such as				

• Describe the structure of Electric Drive systems and their role in various applications such as flexible production systems, energy conservation, renewable energy, transportation etc., making Electric Drives an enabling technology

- Study and understand the operation of electric motor drives controlled from a power electronic converter and to introduce the design concepts of controllers for closed loop operation
- Study DC, AC, special machines like stepper motor, servo motor and brushless motor and their control.

Course Outcomes:

On completion of the course, student will be able to

- 1. Understand the basic principles of power electronics in drives and its control, types of drives and basic requirements placed by mechanical systems on electric drives for various applications
- 2. Understand the operation of 1φ & 3φ converter drives for separately excited & series DC motors, dual converter drives, 2 quadrant and 4 quadrant DC chopper drives, Open-loop & closed-loop control of DC drives with transfer function, Dynamic and regenerative braking. Protection circuits for DC drives.
- 3. Learn speed control of induction motor drives in an energy efficient manner using power electronics. To study and understand the operation of both classical and modern induction motor drives like FOC or Vector control.
- 4. Learn and understand working of various types of synchronous motors and their drive systems
- 5. Learn stepper motors & drives, BLDC and SRM motors and drives
- 6. Understand modern control techniques of Fuzzy logic and ANN in motor drive application

Unit I :Motor Drive as system

5 Hrs

Electrical drive as system, Parts of Electrical drives AC / DC drives, Components, nature and classification of load torques. Four quadrant operation of a motor drive. Control of Electrical drives, steady state stability Closed loop control, Selection of motor power rating

Unit II : DC Motors and drives6Hrs

Basic characteristics of DC motors, Operating modes, Motor performance parameters, $1\phi \& 3\phi$ converter drives for separately excited & series DC motors for continuous & discontinuous operations. Chopper fed DC drives, Comparison of converter fed drive & chopper fed drive. Open loop & closed loop control of dc drives with transfer function PLL control, Microprocessor based control of dc drives, Dynamic and regenerative braking of DC motors

Unit III :Induction Motors and Drives 8Hrs

Induction motor characteristics, Control strategies like stator voltage control, v/f control, rotor resistance control, Variable frequency Square wave VSI Drives, Variable frequency PWM VSI Drives, Variable frequency CSI Drives, Closed loop control of Induction motors, v/f control of three phase IM using PWM inverter, Vector Control (Field oriented Control): Basic principle of vector control, Direct vector control & indirect vector control, DQ Transformation, Braking of induction motor, soft acceleration and deceleration, various protections.

Unit IV :AC and DC synchronous Motors and drives6Hrs

Cylindrical rotor motor Drive, Salient pole motor Drive, Switched reluctance motor (SRM) drive, Synchronous Reluctance motor drive, self-controlled synchronous motor drives Permanent magnet Brushless DC motor drive, Permanent magnet AC synchronous motor drive, Variable reluctance & permanent magnet stepper motor and drive. Servo motor Drives.

Unit V : Power Electronics applications in Renewable Energy 6Hrs

Wind power system: System component, Turbine rating, Electrical load matching, fixed speed and variable speed operation, System design features, Maximum power operations and System control requirement WECS: Principle of WECS, role of power electronics in WECS, Drive selection criteria for fixed speed and variable speed WECS, Stand-alone PV systems, Grid connected PV systems. Power Electronics for Photovoltaic Power Systems Basics of Photovoltaic: The PV cell, Module and array, I-V and P-V curves, PV system component, Stand-alone PV systems, Grid connected PV systems.

Unit VI :Artificial Intelligence in Motor Drives5Hrs

Fuzzy logic principle and applications: Introduction, Fuzzy sets, Fuzzy system, Fuzzy control, Fuzzy logic based induction motor speed control. Neural network principle and applications: Introduction, Neural network in identification and control, AI Applications in electrical machines and drives, Neural network based PWM controller.

Text Books:

- 1. Fundamental of Electrical Drives, Gopal K. Dubey, Narosa Publishing House .
- 2. Power Electronics, circuits, devises and applications by Muhammad Rashid, Pearson
- 3. Modern Power Electronics and AC Drives, Bimal K. Bose, Pearson

Reference Books:

- 1. Wind & Solar Power system, Mukund Patel , CRC Press
- 2. Thyristor DC drives, P. C Sen, John Wiley.
- 3. Power Electronics, Converters, Applications and Design, N. Mohan, T. M. Undeland

&W. P. Robbins, John Wiley and Sons, 3rd Edition

404184 Embedded Systems and RTOS(Elective-I)

Credits: 03

Teaching Scheme:		Examination Scheme:
Lecture : 03Hr/Week		In-Sem : 30 Marks
		End-Sem: 70 Marks

Course Objectives:

- To understand and able to design an application specific systems.
- To develop implementation skill for application specific systems.
- To understand design and implementation of real time system using RTOS.
- To understand open source platform for embedded system

Course Outcomes:

On completion of the course, student will be able to

- 1. Understand design of embedded system
- 2. Use RTOS in embedded application
- 3. Use modern architecture for embedded system
- 4. Use Linux for embedded system development
- 5. Use open platform for embedded system development

Unit I : Embedded System Overview 6 Hrs

Embedded System Introduction, Hardware and software architectures of ES, Design metrics(technical and techno- economical), Prototyping models, Development tool chain insights(GNU), guidelines for Selection of hardware and memory architecture, embedded C programming, embedded system design challenges, standard programming practices in embedded system.

Unit II :Real time system and RTOS 7 Hrs

Real time system, types, design approaches and considerations, Usage of Sharedresources and related issues, Concept of RTOS, Types of RTOS, differences from GPOS (Multitasking, Inter-process communication, Timers, Device drivers, protection mechanism etc.), real time scheduling algorithms, commercial RTOS, survey of RTOS.

Unit III :µcos-II –RTOS8 Hrs

μcos-II features, kernel structure, data structure, μcos-II services as task management, time management, inter-process communication (mailbox, queue,events,pipesetc.), memory management.μcos-II porting on ARM7/Cortex (M3/M4) architecture.

Unit IV : Advanced embedded architectures (Cortex-M3/M4)8 Hrs

Introduction to ARM CORTEX series, Design Philosophy, processors series, versions, features and applications. CMSIS standard for ARM Cortex. Survey of CORTEX M3/M4 based controllers. ARM-CM3 Based Microcontroller LPC1768: Features, Architecture (Block Diagram & itsDescription), System Control, Clock & Power Control, GPIO, Pin Connect Block, interfacing with RGB LED, Seven Segment, TFT Display, MOTOR control using PWM.

Unit V : Embedded Linux 8 Hrs

Linux for embedded systems, embedded Linux development system, kernel architecture and configuration, file systems, porting Linux on ARM architecture, boot loaders, tool utilities such as Minicomp, Busybox, Redboot, Libc, Device drivers- concept, architecture, types, sample character device driver.

Unit VI :Open hardware /development systems and Case study7 Hrs

Arduino open platform (IDE), development using ATMega328p based Uno board, structure of Arduino programs, introduction to Arduino library, sample GPIO program.

Case study of implementation with control, compute and communication modules using Arduino platform.

Text Books:

1. Jean J.Labrosse, "MicroC OS II, The Real-Time Kernel", 2nd edition, CMP Books.

2. Christopher Hallinan, "Embedded Linux Primer - A Practical, Real-World Approach "2nd edition, Prentice Hall.

3. Parag H Dave, Himanshu .H.Dave," Embedded systems" Concepts, design and programming, Pearson India

Reference Books:

1. Frank Vahid and Tony Givargis, "Embedded System Design – A Unified hardware/ Software introduction" 3rd edition, Wiley

2. David Simon, "Embedded system primer"

- 3. Raj Kamal, "Embedded Systems Architecture, Programming and Design" 2nd edition,
- 4. http://www.ti.com/lit/an/slaa207/slaa207.pdf
- 5. MSP430x5xx: http://www.ti.com/product/msp430f5529

6. MSP430x4xx : http://www.ti.com/product/msp430f438

7. MSP430x2xx: http://www.ti.com/product/msp430g2302-ep

404184	Internet o	f Things (Elective-I)					
	Credits: 03						
Teaching Scheme:		Examination Scheme:					
Lecture : 03 Hr/Week		In-Sem: 30 Marks End-Sem: 70 Marks					
Course Objectives:							
• To study fundamental	concepts of IoT						
To understand roles of	sensors in IoT						
• To Learn different pro	tocols used for IoT	design					
• To be familiar with data handling and analytics tools in IoT							
Course Outcomes:							
1. On completion of the o	course, student will	be able to					
2. Understand the variou	s concepts, termino	logies and architecture of IoT systems.					
3. Use sensors and actuat	ors for design of Io	DT.					
4. Understand and apply	various protocols f	for design of IoT systems					
5. Use various technique	s of data storage an	d analytics in IoT					
6. Understand various ap	plications of IoT						
Unit I : Fundamentals of Io	ſ	6Hrs					
Introduction, Definitions & C	haracteristics of Io	T, IoT Architectures, Physical & Logical Design of					
IoT, Enabling Technologies	in IoT, History of	IoT, About Things in IoT, The Identifiers in IoT,					
About the Internet in IoT, IoT	frameworks, IoT a	nd M2M.					
Unit II :Sensors Networks		7Hrs					
Definition, Types of Sensors components, Wireless Sensor	, Types of Actuat or Networks: Hist	ors, Examples and Working, RFID Principles and cory and Context, The node, Connecting nodes,					

Unit III :Wireless Technologies for IoT

6 Hrs

WPAN Technologies for IoT: IEEE 802.15.4, Zigbee, HART, NFC, Z-Wave, BLE, Bacnet, Modbus. Unit IV :IP Based Protocols for IoT 6 Hrs

IPv6, 6LowPAN, RPL, REST, AMPQ, CoAP, MQTT.

Unit V :Data Handling& Analytics6Hrs

Introduction, Bigdata, Types of data, Characteristics of Big data, Data handling Technologies, Flow of data, Data acquisition, Data Storage, Introduction to Hadoop. Introduction to data Analytics, Types of Data analytics, Statistical Models, Analysis of Variance, Data Dispersion, Contingence and Correlation, Regression Analysis, Precision and Error limits.

Unit VI : Applications of IoT

Home Automation, Smart Cities, Energy, Retail Management, Logistics, Agriculture, Health and Lifestyle, Industrial IoT, IoT design Ethics, IoT in Environmental Protection.

Text Books:

1.Hakima Chaouchi, "The Internet of Things Connecting Objects to the Web" ISBN : 978-1-84821-140-7, Wiley Publications

7Hrs

2. Olivier Hersent, David Boswarthick, and Omar Elloumi, "The Internet of Things: Key Applications and Protocols", WileyPublications

3. Vijay Madisetti and ArshdeepBahga, "Internet of Things (A Hands-on-Approach)", 1st Edition, VPT, 2014.

References

1. Daniel Minoli, "Building the Internet of Things with IPv6 and MIPv6: The Evolving World of M2M Communications", ISBN: 978-1-118-47347-4, Willy Publications

2. by Pethuru Raj and Anupama C. Raman, "The Internet of Things: Enabling Technologies, Platforms, and Use Cases", CRC Press

3. <u>http://www.cse.wustl.edu/~jain/cse570-15/ftp/iot_prot/index.html</u>

4. <u>https://onlinecourses.nptel.ac.in/noc17_cs22/course</u>

	404185	Way	velets (Elective-II)	
		Cr	redits: 03	
Teaching Scheme:		Examination Scheme:		
Lecture : 03 Hr/Week			In-Sem: 30 Marks End-Sem: 70 Marks	

Course Objectives:

- Learn and understand basic linear algebra
- Understand the need of time frequency resolution
- Understand the basics of Discrete Wavelet transform and various wavelets available
- Learn the signal analysis using multi-resolution analysis
- Study the applications of Wavelets in compression, enhancement, noise removal etc.

Course Outcomes:

- 1. On completion of the course, student will be able to
- 2. Explore and learn the basics of linear algebra.
- 3. Identify the need of Wavelet transform and its properties.
- 4. Analyze the 1-D and 2-D signal using discrete wavelet transform.
- 5. Analyze the signal using Multi resolution analysis
- 6. Use wavelet transform in different applications like data compression, denoising, enhancement etc.

Unit I : Fundamentals of Linear Algebra6 Hrs

Vector spaces, Orthogonality, Ortho-normality, Projection, Functions and function spaces. Orthogonal basis functions. Fourier series orthogonality of complex exponential bases, mathematical preliminaries for continuous and discrete Fourier transformer. Limitations of Fourier domain signal processing, Towards wavelet signal processing, signal representation with continuous and discrete Short Time Fourier Transform.

Unit II : Introduction to Wavelet

Concept of time-frequency resolution, Resolution problem associated with STFT, Heisenberg's uncertainty principle and time frequency tiling, why wavelet transform? The origin of wavelets, Properties of Wavelet Transform, Wavelet and other wavelet like transformer, different communities and family of wavelets, different families of wavelets within wavelet communities, Continuous and discrete wavelet transform

Unit III : Discrete Wavelet Transform

Haar scaling function and function spaces, translation and scaling of $\varphi(t)$, function spaces V0 Finer Haar Scaling Functions, concept of nested vectopr spaces, Haar wavelet function, scaled and translated Haar wavelet functions, orthogonality of φ (t) and γ (t). Normalization of Haar bases at different scales, daubechies wavelets, plotting of Daubechies wavelets. 1-D and 2-D decomposition (analysis) of signals using Wavelet.

Unit IV : Multi-resolution Analysis

Signal decomposition and its relation with filter banks, frequencies response, signal reconstruction course to fine scale, upsampling and filtering, QMF conditions, concepts of multi-Resolution analysis and multi-rate signal processing, Perfect matching filters, Vanishing moments of wavelet function and filter properties, introduction to wavelet lifting.

Unit V : Wavelet Transform in Data Compression

Transform coding, image compression using DWT, Embedded tree image coding, comparison of JPEG and JPEG 2000, Audio masking, MPEG Coding for audio, Wavelet based audio coding, video coding using Multi-resolution technique (introduction).

6 Hrs

Unit VI : Applications of Wavelet Transform

Waveletdenoising, speckle removal, Edge detection and object isolation Image fusion, wavelet watermark, image enhancement. Communication application scaling functions as signaling pulses, Discrete Wavelet Multitone modulation.

Text Books:

1. K.P Soman, K I Ramchandran, N G Resmi, "Insights into Wavelets from theory to Practice", Third edition, PHI publication.

2. Raghuveer M Rao, Ajit S. Bopardikar, "Wavelet Transforms, Introduction to Theory and Applications", Seventh Indian Reprint 2005, Pearson Education.

Reference Books:

1. Jaideva C. Goswami, Andrew K. Chan, "Fundamentals of Wavelets", Wiley Student Edition 2. V. M. Gadre, A. S. Abhyankar, "Multiresolution and Multirate Signal Processing, Introduction, Principles and Applications", MGH Publication

6 Hrs

8 Hrs

6 Hrs

4 Hrs

404185 Electronic Product Design (Elective-II)

Teaching Scheme:	Examination Scheme:
Lectures: 3 Hrs./ Week	In Sem: 30 Marks
	End Sem: 70Marks

Course Objectives:

- To understand the stages of product (hardware/ software) design and development.
- To learn the different considerations of analog, digital and mixed circuitdesign.
- To be acquainted with methods of PCB design and different tools used for PCBDesign.
- To understand the importance of testing in product design cycle.`
- To understand the processes and importance of documentation.

Course Outcomes:

After Successfully completing the course students will be able to

- Understand various stages of hardware, software and PCBdesign.
- Importance of product test &testspecifications.
- Special design considerations and importance of documentation.

Unit I: Introduction to Electronic Product Design

Man machine dialog and Industrial design, user-centered design, five element of successful design, cognition, ergonomics. Packaging and factors, design for manufacture, assembly and disassembly, wiring, temperature, vibration and shock. Safety, noise, energy coupling, grounding, filtering and shielding.

Unit II: Hardware Design & testing methods

Design process. Identifying the requirements, formulating specifications, design specifications, Specifications verses requirements, System partitioning, Functional design, architectural design, Functional model verses architectural model. Prototyping. Performance and Efficiency measures. Formulating a test plan, writing specifications, Test procedure and test cases, Egoless design, design reviews. Module debug and test: black box test, white box test, grey box test.

Unit III: Software Design and Testing methods

Types of Software. Waterfall model of software development. Models, metrics and software limitations. Risk abatement and failure preventions. Software bugs and testing. Good programming practice. User interface .Embedded, Real time software.

Unit IV: PCB design 6 Hrs

Fundamental Definitions, Standards. Routing Topology Configurations, Layer Stack up assignment, Grounding Methodologies, Aspect Ratio, Image Planes, Functional Partitioning, Critical frequencies, Bypassing and decoupling. Design techniques for ESD Protection, Guard Band implementation.

6 Hrs

6 Hrs

6 Hrs

17

Unit V: Product Debugging and Testing 6 Hrs

Steps of Debugging, Techniques for troubleshooting, characterization, Electromechanical components, passive components, active components, active devices, operational amplifier, Analog-Digital Conversion, Digital Components, Inspection and test of components, Simulation, Prototyping and testing, Integration, validation and verification. EMI & EMC issues.

Unit VI : Documentation

6 Hrs

Definition, need, and types of documentation. Records, Accountability, and Liability. Audience. Preparation, Presentation, and Preservation of documents. Methods of documentation, Visual techniques, Layout of documentation, Bill of material.

Text Books:

- 1. Kim Fowler," Electronic Instrument Design" Oxford universitypress.
- 2. Robert J. Herrick, "Printed Circuit board design Techniques for EMC Compliance", Second edition, IEEE press.

Reference Books:

- 1. James K. Peckol, "Embedded Systems A Contemporary Design Tool", Wiley publication
- 2. J C Whitakar," The Electronics Handbook", CRCpress.

404185	Artifici	ial Intelligence (Ele	ective II)					
	(Credits: 03	· · · · · · · · · · · · · · · · · · ·					
Teaching Scheme:		Exami	Examination Scheme:					
Lecture : 03 hr/week			In-Sem : 30 Marks End-Sem: 70 Marks					
Course Objectives:								
• To learn various types	of algorithms	useful in Artificial Intellige	ence (AI).					
• To convey the ide	as in AI	research and program	ming language related to					
To understand the com	ants of mos	hine leaveine nottern need	anition and natural languages					
• To understand the con	cepts of mac	chine learning, pattern reco	ognition, and natural language					
To understand the nu		institute and huge possibility	litize in the field of AI that					
• 10 understand the normal h	merous appli	ation	nues in the neid of AI that					
Course Outcomes:	uman imagina	anon.						
On completion of the course s	tudent will be	e able to						
1 Design and implement key of	components o	f intelligent agents and exp	ert systems					
2 To apply knowledge represe	ntation techn	iques and problem solving	strategies to common					
AI applications		iques and problem solving	strategies to common					
3 Applyand integrate various	artificial intel	ligence techniques in intelli	gent system					
development as well as unders	tand the impo	ortance of maintaining intell	ligent systems					
4 Build rule-based and other l	cnowledge-in	tensive problem solvers						
Unit I :Foundation			6Hrs					
Intelligent Agents, Agents and	environment	s, Good behavior, The natu	re of environments,					
structure of agents. Problem So	olving, proble	em solving agents, example	problems. Searching for					

structure of agents, Problem Solving, problem solving agents, example problems, Searching for solutions, uniformed search strategies, avoiding repeated states, searching with partial information.

Unit II :Searching 6Hrs

Search and exploration, Informed search strategies, heuristic function, local search algorithms and optimistic problems, local search in continuous spaces, online search agents and unknown environments, Constraint satisfaction problems (CSP), Backtracking search and Local search for CSP, Structure of problems, Games: Optimal decisions in games, Alpha- Beta Pruning, imperfect real-time decision, games that include an element of chance.

Unit III :Knowledge Representation

First order logic, representation revisited, Syntax and semantics for first order logic, Using first order logic, Knowledge engineering in first order logic, Inference in First order logic, prepositional versus first order logic, unification and lifting, forward chaining, backward chaining, Resolution, Knowledge representation, Uncertainty and methods, Bayesian Probability and Belief network, probabilistic Reasoning, Bayesian networks, inferences in Bayesian networks, Temporalmodels, Hidden Markov models.

6Hrs

Unit IV :Learning 6Hrs

Learning from observations: forms of learning, Inductive learning, Learning decision trees, Ensemble learning, Knowledge in learning, Logical formulation of learning, Explanation based learning, Learning using relevant information, Inductive logic programming, Statistical learning methods, Learning with complete data, Learning with hidden variable, EM algorithm, Instance based learning, Neural networks - Reinforcement learning, Passive reinforcement learning, Active reinforcement learning, Generalization in reinforcement learning.

Unit V :Pattern Recognition and Expert System6 Hrs

Basic steps of pattern recognition system, Feature Extraction- Principal Component Analysis, Linear Discriminant Analysis, Classification, Object Recognition- Template Matching theory, Prototype Matching Theory, Speech Recognition, Pattern Mining- Apriori Algorithm,

Unit VI :Natural Language Understanding6Hrs

Why NL, Formal grammar for a fragment of English, Syntactic analysis, Augmented grammars, Semantic interpretation, Ambiguity and disambiguation, Discourse understanding, Grammar

induction, Probabilistic language processing, Probabilistic language models

Text Books:

1. Stuart Russell, Peter Norvig, "Artificial Intelligence", A Modern Approach, Pearson Education/Prentice Hall of India.

- 2. Elaine Rich and Kevin Knight, "Artificial Intelligence", Tata McGraw-Hill.
 - **Reference Books**

404185	Optimization Techniques (Elective II)			
Credits: 03				
Teaching Scheme:		Examination Scheme:		
Lecture : 03hr/week		In-Sem : 30 Marks End-Sem: 70 Marks		

Course Objectives:

- To understand the need and origin of the optimization methods.
- To get a broad picture of the various applications of optimization methods used in engineering
- To define an optimization problem and its various components.

Course Outcomes:

Upon completion of the course, students will be able to:

1. Describe clearly a problem, identify its parts and analyze the individual functions.

2. Perform mathematical translation of the verbal formulation of an optimization problem.

3. Design algorithms, the repetitive use of which will lead reliably to finding an approximate solution

4. Discover, study and solve optimization problems.

5. Investigate, study, develop, organize and promote innovative solutions for various applications.

Unit I : Introduction to Optimization

Introduction: Historical Development, Engineering Applications of Optimization, Statement of an Optimization Problem, Classification of Optimization Problems, Optimization Techniques, Engineering Optimization Literature, Mathematical Background.

6Hrs

7Hrs

Unit II : Classical Optimization Techniques

Single-Variable Optimization, Multivariable Optimization with No Constraints, Multivariable Optimization with Equality Constraints, Multivariable Optimization with Inequality Constraints, Convex Programming Problem.

6 Hrs

7Hrs

Unit III : Linear Programming

Introduction, Applications of Linear Programming, Standard Form of a Linear Programming Problem, Geometry of Linear Programming Problems, Definitions and Theorems, Solution of a System of Linear Simultaneous Equations, Pivotal Reduction of a General System of Equations, Motivation of the Simplex Method, Simplex Method, Revised Simplex Method, Duality in Linear Programming, Decomposition Principle, Sensitivity or Post optimality Analysis, Transportation Problem.

Unit IV : Nonlinear Programming -I

Unimodal Function, Elimination Methods:Unrestricted Search, Unrestricted Search, Dichotomous Search, Interval Halving Method, Fibonacci Method

Interpolation Methods: Quadratic Interpolation Method, Cubic Interpolation Method, Direct Root Methods, Practical Considerations,

Unit V :Nonlinear Programming-II7Hrs

Introduction to Unconstrained Optimization techniques, Direct Search Methods: Random Search Methods, Grid Search Method, Univariate Method, Pattern Directions, Powell's Method, Simplex Method. Indirect Search Methods: Gradient of a Function, Steepest Descent (Cauchy) Method, Conjugate Gradient (Fletcher–Reeves) Method, Newton's Method, Davidon–Fletcher–Powell Method, Test Functions.

Unit VI : Modern Methods of Optimization6 Hrs

Genetic algorithms, Simulated annealing, Particle Swarm Optimization, Ant Colony Optimization, Optimization of Fuzzy systems, Neural Network based optimization

Text Books:

1. Singiresu S Rao, "Engineering optimization Theory and Practice", New Age International, 2009

2.Kalynamoy Deb, "Optimization for Engineering Design, Algorithms and Examples",PHI

Reference Books:

1. Hadley, G. "Linear programming", Narosa Publishing House, New Delhi.

2.Ashok D Belegundu, Tirupathi R Chandrupatla, "Optimization concepts and Application inEngineering", Pearson Education.

3. KantiSwarup, P.K.Gupta and Man Mohan, Operations Research, Sultan Chand and Sons.

4. J. S. Arora, Introduction to Optimum Design, McGraw-Hill Book Company.

5. David Lay, Steven L Lay, "Linear Algebra and its Applications", Pearson Education.

6. Papalambros & Wilde, Principles of Optimal Design, Cambridge University Press, 2008

404185 El	ectronics in	Agriculture	(Elective II)		
Credits: 03					
Teaching Scheme:Examination Scheme:					
Lecture : 03 Hr/Week			In-Sem : 30 Marks End-Sem: 70 Marks		
Course Objectives:					
• To inculcate the ability to agricultural sector.	recognize enviro	nmental problems a	and to provide solutions to		
• An over view of technolo Instrumentation.	gy of advanced to	opics like DAS, SCA	ADA and Virtual		
• The ability to select the es Engineering Automation	ssential elements for Agricultural s	and practices neede ector.	d to develop and implement the		
Course Outcomes:					
After successfully completing the	e course students	will be able to			
1. Understand Role of comp	uters & virtual in	strumentation.			
2. Provide communication s systems.	olution for interp	reting environmenta	al parameters with Electronics		
3. Describe Instrument techn	nology used in ag	riculture.			
4. Apply knowledge of Elec	tronics in Agricu	lture.			
5. Understand Greenhouse 7	Technology & Ro	le of Electronics Go	overnance.		
Unit I: Review of computers &	Virtual instrum	entation	6 Hrs		
Data loggers, Data acquisitions sys	stems (DAS), Sup	ervisory control and	data acquisition (SCADA), Basics		
of PLC, Functional block diagram	of computer cont	rol system, alarms, 11	of virtual instrumentation:		
techniques, graphical programmi	ng in data flow c	omparison with cor	or virtual instrument, data now		
Unit II. Communication System	ng m data now, c				
Unit 11: Communication Systems 6Hrs					
Instrumentation network: sensor networks. Onen networks-advantages and limitations $H\Delta RT$					
Network. Foundation field bus network. Profibus PA: Basics architecture model network					
design.Foundation field bus segments: General consideration, network design.					
Unit III:Instrument technology for agriculture 6Hrs					
Instrument for measurement of pH, Electrical conductivity, gas analysis, humidity, leaf area,					
chlorophyll content, and soil moisture & temperature.					
Unit IV:Precision Farming			6Hrs		
An introduction to precision farming. GIS/GPS positioning system for precision farming, Yield					
monitoring and mapping, soil sampling and analysis. Computers and Geographic information					
systems. Precision farming- Issues and conditions. Role of electronics in farm machinery for					
precision farming.					

Unit V:Electronics in Agriculture

Instrument for crop monitoring – moisture measurement – capacitive, infrared reflectance and resistance. Monitoring soil and weather – measurement of soil properties and meteorological parameters – irrigation control systems. Instruments for crop establishment monitoring. Crop spraying – selective crop spraying – flow control. Yield monitoring. Technology for precision farming. Instruments for protected cultivation – green house environment control – transducers and control system. Instruments and systems for crop handling processing and storage.

Unit VI:Applications & Electronics Governance

6Hrs

6 Hrs

Greenhouse: History of modeling and control of Greenhouse, Identification of control and manipulation variables for Greenhouse. Crop Preservation : Importance of Preservation of various commodities and parts of plants, Drying process for preservation, Variable identification for drying process, Electronic control system for grape drying process.Agriculture& Electronics Governance: Governance products & services in agriculture sector, Role of Electronics Governance in Agricultural sector.

Text Books:

1. Curtis Johnson, "Process Control Instrumentation Technology"; 8th Edition, Pearson Education

2.Stuart A. Boyer, SCADA supervisory control and data acquisition, ISA Publication

Reference Books:

1. De Mess M. N. Fundamental of Geographic Information System. John Willy & sons,

NewYork, Datta S.K.1987.

2. K. Krishna Swamy, "Process Control"; New Age International Publishers

3. Kuhar, John. E. 1977. The precision farming guide for agriculturalist.

4. Lori J. Dhabalt, USManual of Soil & Water conservation Engineering. Oxford & IBH Co. Sigma & Jagmohan, 1976.

characteristics of LEDs and LASERs. Photo detectors: Basic concepts, Common photo detectors.
UNIT II: Light wave Systems 6 Hrs
System architectures, Point to point links: System considerations, Design guidelines: Optical power
budget, Rise time budget, Long - Haul systems.
UNIT III: Multichannel Systems 6 Hrs
Overview of WDM, WDM Components: 2 x 2 Fiber coupler, Optical isolators and circulators,
Multiplexers and De-multiplexers, Fiber Bragg Grating, FBG applications for multiplexing and de-
multiplexing function, Diffraction gratings, Overview of optical amplifiers: SOA, EDFA and RFA in
brief.
UNIT IV: Orbital Mechanics and Launchers 8 Hrs
History of Satellite communication. Orbital mechanics. Look angle determination. Orbital
perturbations. Orbital determination. Launchers and launch vehicles. Orbital effects in
communication system performance.
UNIT V: Satellite sub systems 6 Hrs
Satellite Subsystems, Attitude and Control Systems (AOCS), Telemetry, Tracking, Command and
monitoring, Power systems, Communication subsystems, Satellite antennas, Equipment reliability
and space qualification.
UNIT VI: Satellite communication link design 8Hrs
Introduction, Basic transmission theory, System noise temperature and G/T Ratio, Design of
downlinks, SatelHrsite systems using small earth stations, Uplink design, Design of specified C/N:
Combining C/N and C/I values in satellite links system design examples.
Text Books:
1. Gerd Keiser, "Optical fiber Communications", Tata McGraw Hill, 4th edition.
2. Timothy Pratt, Charles Bostian, Jeremy Allnutt, "Satellite Communications", John Wiley &
Sons.
Reference Books:
1. Govind P. Agrawal, "Fiber -Optic Communication Systems", Wiley, 3rd edition.
2. Dennis Roody, "Satellite Communications", McGraw Hill

404191 Machine Learning (Elective III)			
	Crea	lits: 03	
Feaching Scheme:Examination Scheme:			
Lecture : 03 Hr/week		In-Sem : 30 Marks End-Sem: 70 Marks	

Course Objectives:

- Explore supervised and unsupervised learning paradigms of machine learning used • forregression and classification.
- To design and analyze various machine learning algorithms using neural networks •
- To explore Deep learning technique and various feature extraction strategies.

UNIT I: Light wave System Components

Key Elements of optical fiber system, Optical fibers as a communication channel: Optical fiber modes and configurations, Mode theory for Circular waveguides, Single mode fibers, Graded index fiber structure, Signal degradation in optical fibers. Optical sources: Basic concepts and

character ors.

UNIT II

Hrs

BHrs

8Hrs

Course Outcomes:

On completion of the course, student will be able to

- 1. To compare and contrast pros and cons of various machine learning techniques and to get an in sight of when to apply a particular machine learning approach.
- 2. To mathematically analyze various machine learning approaches and paradigms.
- 3. To implement convolution neural networks in recognition applications.

Unit I :Introduction to Machine Learning

4Hrs

8Hrs

Why Machine learning. Types of machine learning, basic concepts in machine learning like parametric and non-parametricmodeling, linear and nonlinear regression, overfitting and dimensionality reduction. Decision trees, Feature reduction.

Unit II : Models for Regression and Classification

Linear Models for Regression :Least SquaresandNearestNeighbors ,Linear Basis Function Models,The Bias-Variance Decomposition,Bayesian Linear Regression,Bayesian Model ComparisonLinear Models for Classification : Discriminant Functions .Probabilistic Discriminative Models Multivariate Data,ParameterEstimation,MultivariateClassification,Multivariate RegressionKernal Methods : Support Vector machines and Relevance Vector Machines

Unit III :Clustering

6Hrs

Dimensionality Reduction : Principal Components Analysis, Factor Analysis, Multidimensional Scaling, Linear Discriminant Analysis Clustering : k-Means Clustering, Mixtures of Gaussians.

Unit IV : Artificial Neural Networks I 6Hrs

Biological neuron, Artificial neuron model, concept of bias and threshold, Activation functions, McCulloch-Pits Neuron Model, learning paradigms, concept of error energy, gradient descent algorithm and application of linear neuron for linear regression,: Learning mechanisms: Hebbian, Delta Rule, Perceptron and its limitations.

Unit V : Artificial Neural Networks II

6 Hrs

6Hrs

Multilayer perceptron (MLP) and back propagation algorithm, Application of MLP for classification, Self-Organizing Feature Maps, Learning vector quantization Radial Basis Function networks.

Unit VI : Deep Learning and Convolution Neural Networks

Improvement of the Deep Neural Network:Vanishing Gradient, Overfitting, Computational Load,ReLU Function, Dropout Architecture of ConvNet, Convolution Layer, Pooling Layer, Applications of CNN's.

Text Books:

1. Christopher Bishop, "Pattern Recognition and Machine Learning", Springer, 2007.

2. LaureneFausett," Fundamentals of Neural Networks: Architectures, Algorithms And

Applications, Pearson Education, Inc, 2008.

Reference Books:

- 1. Kevin Murphy, Machine Learning: A Probabilistic Perspective, MIT Press, 2012.
- 2. Trevor Hastie, Robert Tibshirani, Jerome Friedman, "The Elementsof Statistical Learning", Springer 2009.
- 3. Phil Kim, "MATLAB Deep Learning: With Machine Learning, Neural Networks and Artificial Intelligence", a Press 2017.
- 4. EthemAlpaydin "Introduction to Machine Learning" Second Edition The MIT Press 2010.

5. SimonHaykin," Neural Networks : A comprehensive foundation, Prentice Hall International Inc. 1999.

404191 PLC & Automation (Elective III) Credits: 03 **Teaching Scheme: Examination Scheme:** Lecture : 03hr/week : 30 Marks In-Sem **End-Sem: 70 Marks Course Objectives:** Student will get the ability to recognize industrial control problems suitable for PLC control • The learners will get an over view of technology of advanced topics such as SCADA, DCS • Systems, DigitalController, CNC Machines. Student will gain the ability to select the essential elements and practices needed to develop and implement the Engineering Automation using PLC approach. **Course Outcomes:** On successful completion of the course, students able to: 1. Understand PLC architecture 2. Develop PLC ladder programs for simple industrial applications 3. Design Automation systems for industrial applications 4. Implement the Engineering Automation using PLC approach. **Unit I: Process Control & Automation 6Hrs** Process control principles, Servomechanisms, Control System Evaluation, Analog control, Digital control, Types of Automation; Architecture of Industrial Automation Systems, Advantages and limitations of Automation, Effects of modern developments in automation on global competitiveness. **Unit II: Transmitters and Signal Conditioning 6Hrs** Need of transmitters, Standardization of signals, Current, Voltage and Pneumatic signal standards, 2-Wire & 3-Wire transmitters, Analog and Digital signal conditioning for RTD, Thermocouple, DPT etc. Smart and Intelligent transmitters. **Unit III: Controllers and Actuators 6Hrs** PID Controller, Cascade PID control, Microprocessor Based control, PAC (Programmable automation controller), Mechanical switches, Solid state switches, Electrical actuators: Solenoids, Relays and Contactors, AC Motor, VFD, energy conservation schemes through VFD, DC Motor, BLDC Motor, Stepper Motor, Servo Motor, Pneumatic and hydraulic actuators. **Unit – IV Introduction to PLC 6Hrs** PLC: Characteristics, Operation, function, Types of PLC, Architecture Of PLC, Applications of PLC, PC v/s PLC, PLC programming, Ladder diagram: of logic gates, multiplexer, Ladder diagram for different logical conditions or logical equations or truth table. Timers: types of timer, Characteristics, Function of timer in PLC, Classification of a PLC timer, Ladder diagram using timer, PLC counter, Ladder diagram using counter. **Unit – V Industrial Automation** 6 Hrs Basic Concept, History and Hierarchy of DCS, Functions of each level, Advantages and Disadvantages, Architecture of SCADA, MTU- functions of MTU, RTU- Functions of RTU, Working of SCADA, Comparison, suitability of PLC, DCS and SCADA, Applications: Thermal power plant, Irrigation and Cement factory.

Unit VI: Automation and CNC (Computer Numeric Control) Machines

7 Hrs

Introduction of CNC Machines: Basics and need of CNC machines, NC, CNC and DNC (Direct NC) systems, Structure of NC systems, Applications of CNC machines in manufacturing, Advantages of CNC machines. Industrial Communication:Devicenet, Interbus , Device network: Foundation Fieldbus -H 1, HART, CAN, PROFIBUS-PA, Control network: ControlNet, FF-HSE, PROFIBUS-DP, Ethernet, TCP/IP. Panel Engineering for Automation

Text Books:

- 1. Curtis Johnson, "Process Control Instrumentation Technology"; 8th Edition, Pearson Education.
- 2. MadhuchhandaMitra, SamarjitSen Gupta, "Programmable Logic controllers and Industrial Automation"; Penram International Publishing India Pvt. Ltd.

Reference Books:

- 1. Stuart A. Boyer, SCADA supervisory control and data acquisition, ISA Publication.
- 2. John W. Webb, Ronold A Reis, "Programmable Logic Controllers, Principles and Applications"; 5th Edition, Prentice Hall of India Pvt. Ltd.
- 3. Kilian, "Modern control technology: components & systems, Delmar 2nd edition.
- 4. Bela G Liptak, Process software and digital networks, 3rd edition, 2002.
- 5. Pollack. Herman, W & Robinson., T. "Computer Numerical Control", Prentice Hall. NJ. Pabla, B.S. & Adithan, M. "CNC Machines", New Age Publishers, New Delhi

404191Audio and Speech Processing (Elective III)

Credits: 03

Teaching Scheme		Examination Scheme	
Lecture : 03 hr/week		In-Sem: 30 Marks End-Sem: 70 Marks	

Course Objectives:

- To understand basics of speech production and perception mechanism.
- To understand classification of speech sounds based on acoustic and articulatory phonetics.
- To understand the motivation of short-term analysis of speech and audio.
- To understand various audio and speech coding techniques.
- To perform the analysis of speech signal using LPC.
- To extract the information of the speech or audio signals in terms of cepstral features.
- To provide a foundation for developing applications in the field of speech and audio processing.

Course Outcomes:

On completion of the course, student will be able to

- 1. Design and implement algorithms for processing speech and audio signals considering the properties of acoustic signals and human hearing.
- 2. Analyze speech signal to extract the characteristic of vocal tract (formants) and vocal cords (pitch).
- 3. Analyze speech signal for extracting LPC and MFCC Parameters of speech signal.
- 4. Apply the knowledge of speech and audio signal analysis to build speech processing applications like speech coding, speech recognition, speech enhancement and speaker recognition/verification.

Unit I : Fundamentals of speech production 6 Hrs
Anatomy and physiology of speech production, Human speech production mechanism, LTI
model for speech production. Nature of speech signal, linear time varying model, articulators.
articulatory phonetics, manner of articulation, place of articulation, acoustic phonetics, spectrogram
classification of speech sounds: vowels semiyowels nasal diphthongs stops affricates fricative
vowel triangle
Vower triangle.
Unit II : Human auditory system and speech perception o Hrs
Anatomy and physiology of the ear, outer ear, middle ear and inner ear. Human auditory system,
simplified model of cochlea. Sound perception, Auditory psychophysics, thresholds, just noticeable
differences (JNDs), Sound pressure level and loudness. Sound intensity and Decibel sound levels.
Pitch perception, masking, Concept of critical band and introduction to auditory system as a filter
bank, Uniform, non-uniform filter bank, mel scale and bark scale. Speech perception: vowel
perception. Coarticulation effects. Consonant perception, perception of manner of articulation
feature. Perception of place of articulation.
Unit III: Time and frequency domain methods for speech and audio signal analysis. 6Hrs
Time-dependent speech processing. Short-time energy, short time average magnitude. Short
time average zero crossing rate. Speech Vs. silence discrimination using energy and zero
crossing rate. Short-time autocorrelation function short-time average magnitude difference
function Pitch period estimation using autocorrelation method Audio feature extraction
Spectral centroid spectral spread spectral entropy spectral flux spectral roll-off Spectrogram:
parrow hand and wide hand spectrogram
Linit IV a Lincor prediction and constrol analysis
Omt IV: Linear prediction and cepstral analysis Omrs
Basic principles of linear predictive analysis. Autocorrelation method, covariance method. Solution
of LPC equations. Durbin's fecursive solution, fattice formulations and solutions. Frequency domain
interpretation of LP analysis. Applications of LPC parameters as pitch detection and formant
analysis
Homomorphic processing of speech signal, application of cepstral analysis for vocal tract vocal cord
parameter estimation (formants and pitch). Computation of MFCC.
Unit V : Speech and Audio coding 6Hrs
Time domain waveform coding: linear PCM, companded PCM, DPCM, DM, ADM.
Spectral coders: Filter bank analysis, sub-band coders, Adaptive transform coders (ATC), Harmonic
coding. Linear predictive coders (LPC), Non-LP source voice coders: phase vocoders, channel
vocoders, excitation for vocoders, Homomorphic (Cepstral) vocoders. Speech coding standards and
applications.
Unit VI : Digital speech processing for man-machine communication 6Hrs
Automatic speech recognition (isolated word recognition, automatic telephone number dialing
system etc. using statistical signal modeling e.g. GMM. GMM-HMM). Linear and dynamic time
warping, text to speech synthesis, speaker recognition and verification, speech enhancement
Introduction to Musical instrument classification. Musical Information retrieval
Text Books.
1 I D Dahinar and S.W. Schofar "Digital processing of apoch signals" Decrean
Dublication
Publication.
2. Douglas O'Shaughnessy, "Speech Communications: Human and Machine:, 2 nd Edition
Universities Press.

Reference Books:

- 1. Thomas F. Quateri, "Discrete-Time Speech Signal Processing: Principles and Practice" Pearson Publication.
- 2. ShailaApte, "Speech and audio processing", Wiley India Publication
- 3. Ben Gold and Nelson Morgan, "Speech and Audio Signal Processing: Processing and Perception of Speech and Music", Wiley India.
- 4. L. R. Rabiner , B. H. Juang and B. Yegnanarayana "Fundamentals of speech recognition". PearsonPublication

Credits: 03 Teaching Scheme: Examination Scheme: Lecture : 03Hr/Week In-Sem: 30 Marks End-Sem: 70 Marks Course Objectives: • To understand "Modern Radio Communication System " that can be reconfigured • To understand GNU Radio • To understand fow SDR platform provides easy access to wireless network system • To understand how SDR platform provides easy access to wireless network system • To understand how unlike simulation in Communication Projects, SDR allows easy • access to both PHY and MAC layer • To understand the concept of Cognitive Radio and Spectrum sharing Course Outcomes: On completion of the course, student will be able to 1. Compare SDR with traditional Hardware Radio 3. Build experiment with real wireless waveform and applications, accessing both PHY and MAC, Compare SDR versus MATLAB and Hardware Radio 4. Work on open projects and explore their capability to build their own communication System. Unit 1: Introduction to SDR, Need of SDR, Principles of SDR , Basic Principle and difference in Analog radio and SDR , SDR characteristics, required hardware specifications, Software/Hardware platform, GNU radio -What is GNU radio, GNU Radio Architecture, Hardware Block of GNU,GNU software , Diplexer ,RF filter ,LNA ,Image reject filters , IF filters , RF Mixers Local Oscillator , AGC, Transmitter Architecture and their issues, Sampling theorem in ADC, Noise and disto	404191 Software Defined Radio (Elective III)				
Teaching Scheme: Examination Scheme: Lecture : 03Hr/Week In-Sem: 30 Marks End-Sem: 70 Marks Course Objectives: • To understand "Modern Radio Communication System " that can be reconfigured • To understand GNU Radio • To understand how SDR platform provides easy access to wireless network system • To understand how SDR platform provides easy access to wireless network system • To understand how unlike simulation in Communication Projects, SDR allows easy • access to both PHY and MAC layer • To understand the concept of Cognitive Radio and Spectrum sharing Course Outcomes: On completion of the course, student will be able to 1. Compare SDR with traditional Hardware Radio HDR. 2. Implement modern wireless system based on OFDM, MIMO & Smart Antenna. 3. Build experiment with real wireless waveform and applications, accessing both PHY and MAC, Compare SDR versus MATLAB and Hardware Radio 4. Work on open projects and explore their capability to build their own communication System. Unit 1 : Introduction to SDR, Need of SDR, Principles of SDR , Basic Principle and difference in Analog radio and SDR , SDR characteristics, required hardware specifications, Software/Hardware platform, GNU radio -What is GNU radio, GNU Radio Architecture, Hardware Block of GNU,GNU software , MATLAB in SDR , Radio Frequency Implementation issues, Purpose of RF front End, Dynamic Range, RF receiver Front End topologies, Flexibility of RF chain with sof	Credits: 03				
Lecture : 03Hr/Week In-Sem: 30 Marks Course Objectives: • To understand "Modern Radio Communication System " that can be reconfigured • To understand GNU Radio • To understand GNU Radio • To understand how SDR platform provides easy access to wireless network system • To understand how unlike simulation in Communication Projects, SDR allows easy • access to both PHY and MAC layer • To understand the concept of Cognitive Radio and Spectrum sharing Course Outcomes: On completion of the course, student will be able to 1. Compare SDR with traditional Hardware Radio HDR. 2. Implement modern wireless system based on OFDM, MIMO & Smart Antenna. 3. Build experiment with real wireless waveform and applications, accessing both PHY and MAC, Compare SDR versus MATLAB and Hardware Radio 4. Work on open projects and explore their capability to build their own communication System. Unit 1 : Introduction to SDR and RF Implementation sues, Purpose of RF front End, Dynamic Range ,RF receiver Front End topologies, Flexibility of RF chain with software radio, Dynamic Range ,RF receiver Front End topologies, Flexibility of RF chain with software radio, Duplexer ,Diplexer ,RF filter ,LNA ,Image reject filters , IF filters , RF Mixers Local Oscillator , AGC, Transmitter Architecture and their issues, Sampling theorem in ADC, Noise and distortion in RF chain, Pre-distortion Unit 1 : Introduction to SDR-Open Architecture, Software Communication Architecture, Transmitter Receiver Homodyne/hetero	Teaching Scheme: Examination Scheme:				
Course Objectives: To understand "Modern Radio Communication System " that can be reconfigured To understand GNU Radio To understand how SDR platform provides easy access to wireless network system To understand how unlike simulation in Communication Projects, SDR allows easy access to both PHY and MAC layer To understand the concept of Cognitive Radio and Spectrum sharing Course Outcomes: On completion of the course, student will be able to Compare SDR with traditional Hardware Radio HDR. Implement modern wireless system based on OFDM, MIMO & Smart Antenna. Build experiment with real wireless waveform and applications, accessing both PHY and MAC, Compare SDR versus MATLAB and Hardware Radio Work on open projects and explore their capability to build their own communication System. Unit 1: Introduction to SDR and RF Implementation of SDR , Basic Principle and difference in Analog radio and SDR , SDR characteristics, required hardware specifications, Software/Hardware platform, GNU radio -What is GNU radio, GNU Radio Architecture, Hardware Block of GNU,GNU software, MATLAB in SDR , Radio Frequency Implementation issues, Purpose of RF front End, Dynamic Range ,RF receiver Front End topologies, Flexibility of RF chain with software radio, Duplexer ,Diplexer ,RF filter ,LNA ,Image reject filters , IF filters , RF Mixers Local Oscillator , AGC, Transmitter Architecture and their issues, Sampling theorem in ADC, Noise and distortion in RF chain, Pre-distortion Unit 11: SDR Architecture MAC: Compane ARC Filter LORA / CPU/GPU in SDR, Applications of FPGA in SDR, Design Principles using FPGA, Trade –offs in using DSP, FPGA and ASIC, Power Management Issues	Lecture : 03Hr/Week				In-Sem: 30 Marks End-Sem: 70 Marks
 To understand "Modern Radio Communication System " that can be reconfigured To understand GNU Radio To understand how SDR platform provides easy access to wireless network system To understand how unlike simulation in Communication Projects, SDR allows easy access to both PHY and MAC layer To understand the concept of Cognitive Radio and Spectrum sharing Course Outcomes: On completion of the course, student will be able to Compare SDR with traditional Hardware Radio HDR. Implement modern wireless system based on OFDM, MIMO & Smart Antenna. Build experiment with real wireless waveform and applications, accessing both PHY and MAC, Compare SDR versus MATLAB and Hardware Radio Work on open projects and explore their capability to build their own communication System. Unit 1: Introduction to SDR and RF Implementation GHTS Introduction to SDR, Need of SDR, Principles of SDR, Basic Principle and difference in Analog radio and SDR , SDR characteristics, required hardware specifications, Software/Hardware platform, GNU radio. GNU Radio, GNU Radio Architecture, Hardware Block of GNU, GNU software, JDiplexer Front End topologies, Flexibility of RF chain with software radio, Duplexer Diplexer RF filter ,LNA ,Image reject filters , IF filters , RF Mixers Local Oscillator , AGC, Transmitter Architecture and their issues, Sampling theorem in ADC, Noise and distortion in RF chain, Pre-distortion Unit II :SDR Architecture Architecture, RF front End, ADC, DAC, DAC/ADC Noise Budget, ADC and DAC Distortion, Role of FPGA/CPU/GPU in SDR, Applications of FPGA in SDR, Design Principles using FPGA, Trade –offs in using DSP, FPGA and ASIC, Power Management Issues in	Course Objectives:			I	
 To understand GNU Radio To understand how SDR platform provides easy access to wireless network system To understand how unlike simulation in Communication Projects, SDR allows easy access to both PHY and MAC layer To understand the concept of Cognitive Radio and Spectrum sharing Course Outcomes: On completion of the course, student will be able to Compare SDR with traditional Hardware Radio HDR. Implement modern wireless system based on OFDM, MIMO & Smart Antenna. Build experiment with real wireless waveform and applications, accessing both PHY and MAC, Compare SDR versus MATLAB and Hardware Radio Work on open projects and explore their capability to build their own communication System. 	• To understand "Modern	n Radio Co	ommunio	cation System " that ca	an be reconfigured
 To understand how SDR platform provides easy access to wireless network system To understand how unlike simulation in Communication Projects, SDR allows easy access to both PHY and MAC layer To understand the concept of Cognitive Radio and Spectrum sharing Course Outcomes: On completion of the course, student will be able to Compare SDR with traditional Hardware Radio HDR. Implement modern wireless system based on OFDM, MIMO & Smart Antenna. Build experiment with real wireless waveform and applications, accessing both PHY and MAC, Compare SDR versus MATLAB and Hardware Radio Work on open projects and explore their capability to build their own communication System. Unit I : Introduction to SDR and RF Implementation MartLAB in SDR, Need of SDR, Principles of SDR, Basic Principle and difference in Analog radio and SDR, SDR characteristics, required hardware specifications, Software/Hardware platform, GNU radio -What is GNU radio, GNU Radio Architecture, Hardware Block of GNU,GNU software , MATLAB in SDR , Radio Frequency Implementation issues, Purpose of RF front End, Dynamic Range, RF receiver Front End topologies, Flexibility of RF chain with software radio, Duplexer ,Diplexer ,RF filter ,LNA ,Image reject filters , IF filters , RF Mixers Local Oscillator , AGC, Transmitter Architecture and their issues, Sampling theorem in ADC, Noise and distortion in RF chain, Pre-distortion Unit II :SDR Architecture 7Hrs Architecture of SDR-Open Architecture, RF front End, ADC, DAC, ADC/ADC Noise Budget, ADC and DAC Distortion, Role of FPGA/CPU/GPU in SDR, Applications of FPGA in SDR, Design Principles using FPGA, Trade –offs in using DSP, FPGA and ASIC, Power Management Issues in	• To understand GNU Ra	adio		5	5
 To understand how unlike simulation in Communication Projects, SDR allows easy access to both PHY and MAC layer To understand the concept of Cognitive Radio and Spectrum sharing Course Outcomes: On completion of the course, student will be able to Compare SDR with traditional Hardware Radio HDR. Implement modern wireless system based on OFDM, MIMO & Smart Antenna. Build experiment with real wireless waveform and applications, accessing both PHY and MAC, Compare SDR versus MATLAB and Hardware Radio 	• To understand how SD	R platform	n provide	es easy access to wirel	ess network system
 access to both PHY and MAC layer To understand the concept of Cognitive Radio and Spectrum sharing Course Outcomes: On completion of the course, student will be able to Compare SDR with traditional Hardware Radio HDR. Implement modern wireless system based on OFDM, MIMO & Smart Antenna. Build experiment with real wireless waveform and applications, accessing both PHY and MAC, Compare SDR versus MATLAB and Hardware Radio Work on open projects and explore their capability to build their own communication System. Unit 1: Introduction to SDR and RF Implementation GHrs Introduction to SDR, Need of SDR, Principles of SDR , Basic Principle and difference in Analog radio and SDR , SDR characteristics, required hardware specifications, Software/Hardware platform, GNU radio -What is GNU radio, GNU Radio Architecture, Hardware Block of GNU,GNU software , MATLAB in SDR , Radio Frequency Implementation issues, Purpose of RF front End, Dynamic Range ,RF receiver Front End topologies, Flexibility of RF chain with software radio, Duplexer ,Diplexer ,RF filter ,LNA ,Image reject filters , IF filters , RF Mixers Local Oscillator , AGC, Transmitter Architecture and their issues, Sampling theorem in ADC, Noise and distortion in RF chain, Pre-distortion	• To understand how unl	ike simula	tion in C	Communication Projec	ts, SDR allows easy
To understand the concept of Cognitive Radio and Spectrum sharing Course Outcomes: On completion of the course, student will be able to 1. Compare SDR with traditional Hardware Radio HDR. 2. Implement modern wireless system based on OFDM, MIMO & Smart Antenna. 3. Build experiment with real wireless waveform and applications, accessing both PHY and MAC, Compare SDR versus MATLAB and Hardware Radio 4. Work on open projects and explore their capability to build their own communication System. Unit I : Introduction to SDR and RF Implementation 6Hrs Introduction to SDR, Need of SDR, Principles of SDR, Basic Principle and difference in Analog radio and SDR, SDR characteristics, required hardware specifications, Software/Hardware platform, GNU radio -What is GNU radio, GNU Radio Architecture, Hardware Block of GNU,GNU software, MATLAB in SDR , Radio Frequency Implementation issues, Purpose of RF front End, Dynamic Range ,RF receiver Front End topologies, Flexibility of RF chain with software radio, Duplexer ,Diplexer ,RF filter ,LNA ,Image reject filters , IF filters , RF Mixers Local Oscillator , AGC, Transmitter Architecture and their issues, Sampling theorem in ADC, Noise and distortion in RF chain, Pre-distortion Unit II :SDR Architecture, RF front End, ADC, DAC, DAC/ADC Noise Budget, ADC and DAC Distortion, Role of FPGA/CPU/GPU in SDR, Applications of FPGA in SDR, Design Principles using FPGA, Trade –offs in using DSP, FPGA and ASIC, Power Management Issues in	• access to both PHY and	d MAC lay	ver	5	
Course Outcomes: On completion of the course, student will be able to 1. Compare SDR with traditional Hardware Radio HDR. 2. Implement modern wireless system based on OFDM, MIMO & Smart Antenna. 3. Build experiment with real wireless waveform and applications, accessing both PHY and MAC, Compare SDR versus MATLAB and Hardware Radio 4. Work on open projects and explore their capability to build their own communication System. Unit I : Introduction to SDR and RF Implementation 6Hrs Introduction to SDR, Need of SDR, Principles of SDR , Basic Principle and difference in Analog radio and SDR , SDR characteristics, required hardware specifications, Software/Hardware platform, GNU radio -What is GNU radio, GNU Radio Architecture, Hardware Block of GNU,GNU software , MATLAB in SDR , Radio Frequency Implementation issues, Purpose of RF front End, Dynamic Range ,RF receiver Front End topologies, Flexibility of RF chain with software radio, Duplexer ,Diplexer ,RF filter ,LNA ,Image reject filters , IF filters , RF Mixers Local Oscillator , AGC, Transmitter Architecture and their issues, Sampling theorem in ADC, Noise and distortion in RF chain, Pre-distortion Unit I :SDR Architecture 7Hrs Architecture of SDR-Open Architecture, RF front End, ADC, DAC, DAC/ADC Noise Budget, ADC and DAC Distortion, Role of FPGA/CPU/GPU in SDR, Applications of FPGA in SDR, Design Principles using FPGA, Trade –offs in using DSP, FPGA and ASIC, Power Management Issues in	• To understand the conc	ept of Cog	gnitive R	adio and Spectrum sh	aring
 On completion of the course, student will be able to Compare SDR with traditional Hardware Radio HDR. Implement modern wireless system based on OFDM, MIMO & Smart Antenna. Build experiment with real wireless waveform and applications, accessing both PHY and MAC, Compare SDR versus MATLAB and Hardware Radio 	Course Outcomes:	<u> </u>		I	
 Compare SDR with traditional Hardware Radio HDR. Implement modern wireless system based on OFDM, MIMO & Smart Antenna. Build experiment with real wireless waveform and applications, accessing both PHY and MAC, Compare SDR versus MATLAB and Hardware Radio Work on open projects and explore their capability to build their own communication System. Unit I : Introduction to SDR and RF Implementation 6Hrs Nordware SDR, Need of SDR, Principles of SDR , Basic Principle and difference in Analog radio and SDR , SDR characteristics, required hardware specifications, Software/Hardware platform, GNU radio -What is GNU radio, GNU Radio Architecture, Hardware Block of GNU,GNU software , MATLAB in SDR , Radio Frequency Implementation issues, Purpose of RF front End, Dynamic Range ,RF receiver Front End topologies, Flexibility of RF chain with software radio, Duplexer ,Diplexer ,RF filter ,LNA ,Image reject filters , IF filters , RF Mixers Local Oscillator , AGC, Transmitter Architecture and their issues, Sampling theorem in ADC, Noise and distortion in RF chain, Pre-distortion Unit II :SDR Architecture 7Hrs Architecture of SDR-Open Architecture, RF front End, ADC, DAC, DAC/ADC Noise Budget, ADC and DAC Distortion, Role of FPGA/CPU/GPU in SDR, Applications of FPGA in SDR, Design Principles using FPGA, Trade –offs in using DSP, FPGA and ASIC, Power Management Issues in 	On completion of the course, s	tudent wil	l be able	to	
 Implement modern wireless system based on OFDM, MIMO & Smart Antenna. Build experiment with real wireless waveform and applications, accessing both PHY and MAC, Compare SDR versus MATLAB and Hardware Radio Work on open projects and explore their capability to build their own communication System. Unit 1: Introduction to SDR and RF Implementation 6Hrs Introduction to SDR, Need of SDR, Principles of SDR , Basic Principle and difference in Analog radio and SDR , SDR characteristics, required hardware specifications, Software/Hardware platform, GNU radio -What is GNU radio, GNU Radio Architecture, Hardware Block of GNU,GNU software , MATLAB in SDR , Radio Frequency Implementation issues, Purpose of RF front End, Dynamic Range ,RF receiver Front End topologies, Flexibility of RF chain with software radio, Duplexer ,Diplexer ,RF filter ,LNA ,Image reject filters , IF filters , RF Mixers Local Oscillator , AGC, Transmitter Architecture and their issues, Sampling theorem in ADC, Noise and distortion in RF chain, Pre-distortion Unit II :SDR Architecture THrs Architecture of SDR-Open Architecture, RF front End, ADC, DAC, DAC/ADC Noise Budget, ADC and DAC Distortion, Role of FPGA/CPU/GPU in SDR, Applications of FPGA in SDR, Design Principles using FPGA, Trade –offs in using DSP, FPGA and ASIC, Power Management Issues in 	1. Compare SDR with tra-	ditional Ha	ardware	Radio HDR.	
 Build experiment with real wireless waveform and applications, accessing both PHY and MAC, Compare SDR versus MATLAB and Hardware Radio Work on open projects and explore their capability to build their own communication System. Unit I: Introduction to SDR and RF Implementation 6Hrs Introduction to SDR, Need of SDR, Principles of SDR , Basic Principle and difference in Analog radio and SDR , SDR characteristics, required hardware specifications, Software/Hardware platform, GNU radio -What is GNU radio, GNU Radio Architecture, Hardware Block of GNU,GNU software , MATLAB in SDR , Radio Frequency Implementation issues, Purpose of RF front End, Dynamic Range ,RF receiver Front End topologies, Flexibility of RF chain with software radio, Duplexer ,Diplexer ,RF filter ,LNA ,Image reject filters , IF filters , RF Mixers Local Oscillator , AGC, Transmitter Architecture and their issues, Sampling theorem in ADC, Noise and distortion in RF chain, Pre-distortion Unit II :SDR Architecture THrs Architecture of SDR-Open Architecture, RF front End, ADC, DAC, DAC/ADC Noise Budget, ADC and DAC Distortion, Role of FPGA/CPU/GPU in SDR, Applications of FPGA in SDR, Design Principles using FPGA, Trade –offs in using DSP, FPGA and ASIC, Power Management Issues in 	2. Implement modern wir	eless syste	m based	on OFDM, MIMO &	Smart Antenna.
MAC, Compare SDR versus MATLAB and Hardware Radio 4. Work on open projects and explore their capability to build their own communication System. Unit I : Introduction to SDR and RF Implementation Introduction to SDR, Need of SDR, Principles of SDR , Basic Principle and difference in Analog radio and SDR , SDR characteristics, required hardware specifications, Software/Hardware platform, GNU radio -What is GNU radio, GNU Radio Architecture, Hardware Block of GNU,GNU software , MATLAB in SDR , Radio Frequency Implementation issues, Purpose of RF front End, Dynamic Range ,RF receiver Front End topologies, Flexibility of RF chain with software radio, Duplexer ,Diplexer ,RF filter ,LNA ,Image reject filters , IF filters , RF Mixers Local Oscillator , AGC, Transmitter Architecture and their issues, Sampling theorem in ADC, Noise and distortion in RF chain, Pre-distortion Unit II :SDR Architecture Architecture of SDR-Open Architecture, RF front End, ADC, DAC, DAC/ADC Noise Budget, ADC and DAC Distortion, Role of FPGA/CPU/GPU in SDR, Applications of FPGA in SDR, Design Principles using FPGA, Trade –offs in using DSP, FPGA and ASIC, Power Management Issues in	3. Build experiment with	real wirele	ess wave	form and applications	, accessing both PHY and
 4. Work on open projects and explore their capability to build their own communication System. Unit I : Introduction to SDR and RF Implementation 6Hrs Introduction to SDR, Need of SDR, Principles of SDR, Basic Principle and difference in Analog radio and SDR, SDR characteristics, required hardware specifications, Software/Hardware platform, GNU radio -What is GNU radio, GNU Radio Architecture, Hardware Block of GNU,GNU software, MATLAB in SDR, Radio Frequency Implementation issues, Purpose of RF front End, Dynamic Range ,RF receiver Front End topologies, Flexibility of RF chain with software radio, Duplexer ,Diplexer ,RF filter ,LNA ,Image reject filters , IF filters , RF Mixers Local Oscillator , AGC, Transmitter Architecture and their issues, Sampling theorem in ADC, Noise and distortion in RF chain, Pre-distortion Unit II :SDR Architecture Architecture, Software Communication Architecture, Transmitter Receiver Homodyne/heterodyne architecture, RF front End, ADC, DAC, DAC/ADC Noise Budget, ADC and DAC Distortion, Role of FPGA/CPU/GPU in SDR, Applications of FPGA in SDR, Design Principles using FPGA, Trade –offs in using DSP, FPGA and ASIC, Power Management Issues in 	MAC, Compare SDR versus M	IATLAB a	and Hard	ware Radio	
System. 6Hrs Unit I : Introduction to SDR and RF Implementation 6Hrs Introduction to SDR, Need of SDR, Principles of SDR , Basic Principle and difference in Analog radio and SDR , SDR characteristics, required hardware specifications, Software/Hardware platform, GNU radio -What is GNU radio, GNU Radio Architecture, Hardware Block of GNU,GNU software , MATLAB in SDR , Radio Frequency Implementation issues, Purpose of RF front End, Dynamic Range ,RF receiver Front End topologies, Flexibility of RF chain with software radio, Duplexer ,Diplexer ,RF filter ,LNA ,Image reject filters , IF filters , RF Mixers Local Oscillator , AGC, Transmitter Architecture and their issues, Sampling theorem in ADC, Noise and distortion in RF chain, Pre-distortion Unit II :SDR Architecture 7Hrs Architecture of SDR-Open Architecture, RF front End, ADC, DAC, DAC/ADC Noise Budget, ADC and DAC Distortion, Role of FPGA/CPU/GPU in SDR, Applications of FPGA in SDR, Design Principles using FPGA, Trade –offs in using DSP, FPGA and ASIC, Power Management Issues in	4. Work on open projects	and explo	re their c	apability to build thei	r own communication
Unit I : Introduction to SDR and RF Implementation6HrsIntroduction to SDR, Need of SDR, Principles of SDR , Basic Principle and difference in Analog radio and SDR , SDR characteristics, required hardware specifications, Software/Hardware platform, GNU radio -What is GNU radio, GNU Radio Architecture, Hardware Block of GNU,GNU software , MATLAB in SDR , Radio Frequency Implementation issues, Purpose of RF front End, Dynamic Range ,RF receiver Front End topologies, Flexibility of RF chain with software radio, Duplexer ,Diplexer ,RF filter ,LNA ,Image reject filters , IF filters , RF Mixers Local Oscillator , AGC, Transmitter Architecture and their issues, Sampling theorem in ADC, Noise and distortion in RF chain, Pre-distortionUnit II :SDR Architecture Receiver Homodyne/heterodyne architecture, RF front End, ADC, DAC, DAC/ADC Noise Budget, ADC and DAC Distortion, Role of FPGA/CPU/GPU in SDR, Applications of FPGA in SDR, Design Principles using FPGA, Trade –offs in using DSP, FPGA and ASIC, Power Management Issues in	System.				
Unit I : Introduction to SDR and RF Implementation6HrsIntroduction to SDR, Need of SDR, Principles of SDR , Basic Principle and difference in Analog radio and SDR , SDR characteristics, required hardware specifications, Software/Hardware platform, GNU radio -What is GNU radio, GNU Radio Architecture, Hardware Block of GNU,GNU software , MATLAB in SDR , Radio Frequency Implementation issues, Purpose of RF front End, Dynamic Range ,RF receiver Front End topologies, Flexibility of RF chain with software radio, Duplexer ,Diplexer ,RF filter ,LNA ,Image reject filters , IF filters , RF Mixers Local Oscillator , AGC, Transmitter Architecture and their issues, Sampling theorem in ADC, Noise and distortion in RF chain, Pre-distortionUnit II :SDR Architecture7HrsArchitecture of SDR-Open Architecture, RF front End, ADC, DAC, DAC/ADC Noise Budget, ADC and DAC Distortion, Role of FPGA/CPU/GPU in SDR, Applications of FPGA in SDR, Design Principles using FPGA, Trade –offs in using DSP, FPGA and ASIC, Power Management Issues in					
Introduction to SDR, Need of SDR, Principles of SDR, Basic Principle and difference in Analog radio and SDR, SDR characteristics, required hardware specifications, Software/Hardware platform, GNU radio -What is GNU radio, GNU Radio Architecture, Hardware Block of GNU,GNU software, MATLAB in SDR, Radio Frequency Implementation issues, Purpose of RF front End, Dynamic Range ,RF receiver Front End topologies, Flexibility of RF chain with software radio, Duplexer ,Diplexer ,RF filter ,LNA ,Image reject filters , IF filters , RF Mixers Local Oscillator , AGC, Transmitter Architecture and their issues, Sampling theorem in ADC, Noise and distortion in RF chain, Pre-distortion THrs Architecture of SDR-Open Architecture, RF front End, ADC, DAC, DAC/ADC Noise Budget, ADC and DAC Distortion, Role of FPGA/CPU/GPU in SDR, Applications of FPGA in SDR, Design Principles using FPGA, Trade –offs in using DSP, FPGA and ASIC, Power Management Issues in	Unit I · Introduction to SDR	and RF I	mnlomo	ntation	6Hrs
radio and SDR , SDR characteristics, required hardware specifications, Software/Hardware platform, GNU radio -What is GNU radio, GNU Radio Architecture, Hardware Block of GNU,GNU software , MATLAB in SDR , Radio Frequency Implementation issues, Purpose of RF front End, Dynamic Range ,RF receiver Front End topologies, Flexibility of RF chain with software radio, Duplexer ,Diplexer ,RF filter ,LNA ,Image reject filters , IF filters , RF Mixers Local Oscillator , AGC, Transmitter Architecture and their issues, Sampling theorem in ADC, Noise and distortion in RF chain, Pre-distortion Unit II :SDR Architecture Architecture of SDR-Open Architecture, Software Communication Architecture, Transmitter Receiver Homodyne/heterodyne architecture, RF front End, ADC, DAC, DAC/ADC Noise Budget, ADC and DAC Distortion, Role of FPGA/CPU/GPU in SDR, Applications of FPGA in SDR, Design Principles using FPGA, Trade –offs in using DSP, FPGA and ASIC, Power Management Issues in	Introduction to SDR Need of	SDR Pri	nciples	of SDR Basic Princ	inle and difference in Analog
GNU radio -What is GNU radio, GNU Radio Architecture, Hardware Block of GNU,GNU software , MATLAB in SDR , Radio Frequency Implementation issues, Purpose of RF front End, Dynamic Range ,RF receiver Front End topologies, Flexibility of RF chain with software radio, Duplexer ,Diplexer ,RF filter ,LNA ,Image reject filters , IF filters , RF Mixers Local Oscillator , AGC, Transmitter Architecture and their issues, Sampling theorem in ADC, Noise and distortion in RF chain, Pre-distortion Unit II :SDR Architecture Architecture of SDR-Open Architecture, Software Communication Architecture, Transmitter Receiver Homodyne/heterodyne architecture, RF front End, ADC, DAC, DAC/ADC Noise Budget, ADC and DAC Distortion, Role of FPGA/CPU/GPU in SDR, Applications of FPGA in SDR, Design Principles using FPGA, Trade –offs in using DSP, FPGA and ASIC, Power Management Issues in	radio and SDR SDR characte	ristics, rec	mired ha	rdware specifications	Software/Hardware platform
MATLAB in SDR , Radio Frequency Implementation issues, Purpose of RF front End, Dynamic Range ,RF receiver Front End topologies, Flexibility of RF chain with software radio, Duplexer ,Diplexer ,RF filter ,LNA ,Image reject filters , IF filters , RF Mixers Local Oscillator , AGC, Transmitter Architecture and their issues, Sampling theorem in ADC, Noise and distortion in RF chain, Pre-distortion Unit II :SDR Architecture Architecture of SDR-Open Architecture, Software Communication Architecture, Transmitter Receiver Homodyne/heterodyne architecture, RF front End, ADC, DAC, DAC/ADC Noise Budget, ADC and DAC Distortion, Role of FPGA/CPU/GPU in SDR, Applications of FPGA in SDR, Design Principles using FPGA, Trade –offs in using DSP, FPGA and ASIC, Power Management Issues in	GNU radio -What is GNU radi	o. GNU R	adio Are	chitecture. Hardware I	Block of GNU.GNU software.
Range ,RF receiver Front End topologies, Flexibility of RF chain with software radio, Duplexer ,Diplexer ,RF filter ,LNA ,Image reject filters , IF filters , RF Mixers Local Oscillator , AGC, Transmitter Architecture and their issues, Sampling theorem in ADC, Noise and distortion in RF chain, Pre-distortion Unit II :SDR Architecture Architecture of SDR-Open Architecture, Software Communication Architecture, Transmitter Receiver Homodyne/heterodyne architecture, RF front End, ADC, DAC, DAC/ADC Noise Budget, ADC and DAC Distortion, Role of FPGA/CPU/GPU in SDR, Applications of FPGA in SDR, Design Principles using FPGA, Trade –offs in using DSP, FPGA and ASIC, Power Management Issues in	MATLAB in SDR . Radio Frequency Implementation issues. Purpose of RF front End. Dynamic				
,Diplexer ,RF filter ,LNA ,Image reject filters , IF filters , RF Mixers Local Oscillator , AGC, Transmitter Architecture and their issues, Sampling theorem in ADC, Noise and distortion in RF chain, Pre-distortion Unit II :SDR Architecture Architecture of SDR-Open Architecture, Software Communication Architecture, Transmitter Receiver Homodyne/heterodyne architecture, RF front End, ADC, DAC, DAC/ADC Noise Budget, ADC and DAC Distortion, Role of FPGA/CPU/GPU in SDR, Applications of FPGA in SDR, Design Principles using FPGA, Trade –offs in using DSP, FPGA and ASIC, Power Management Issues in	Range ,RF receiver Front End topologies, Flexibility of RF chain with software radio, Duplexer				
Transmitter Architecture and their issues, Sampling theorem in ADC, Noise and distortion in RF chain, Pre-distortion Unit II :SDR Architecture 7Hrs Architecture of SDR-Open Architecture, Software Communication Architecture, Transmitter Receiver Homodyne/heterodyne architecture, RF front End, ADC, DAC, DAC/ADC Noise Budget, ADC and DAC Distortion, Role of FPGA/CPU/GPU in SDR, Applications of FPGA in SDR, Design Principles using FPGA, Trade –offs in using DSP, FPGA and ASIC, Power Management Issues in	,Diplexer ,RF filter ,LNA ,Image reject filters , IF filters , RF Mixers Local Oscillator , AGC,				
chain, Pre-distortion7HrsUnit II :SDR Architecture7HrsArchitecture of SDR-Open Architecture, Software Communication Architecture, TransmitterReceiver Homodyne/heterodyne architecture, RF front End, ADC, DAC, DAC/ADC Noise Budget,ADC and DAC Distortion, Role of FPGA/CPU/GPU in SDR, Applications of FPGA in SDR, DesignPrinciples using FPGA, Trade –offs in using DSP, FPGA and ASIC, Power Management Issues in	Transmitter Architecture and their issues, Sampling theorem in ADC, Noise and distortion in RF				
Unit II :SDR Architecture 7Hrs Architecture of SDR-Open Architecture, Software Communication Architecture, Transmitter Receiver Homodyne/heterodyne architecture, RF front End, ADC, DAC, DAC/ADC Noise Budget, ADC and DAC Distortion, Role of FPGA/CPU/GPU in SDR, Applications of FPGA in SDR, Design Principles using FPGA, Trade –offs in using DSP, FPGA and ASIC, Power Management Issues in	chain, Pre-distortion				
Architecture of SDR-Open Architecture, Software Communication Architecture, Transmitter Receiver Homodyne/heterodyne architecture, RF front End, ADC, DAC, DAC/ADC Noise Budget, ADC and DAC Distortion, Role of FPGA/CPU/GPU in SDR, Applications of FPGA in SDR, Design Principles using FPGA, Trade –offs in using DSP, FPGA and ASIC, Power Management Issues in	Unit II :SDR Architecture7Hrs				
Receiver Homodyne/heterodyne architecture, RF front End, ADC, DAC, DAC/ADC Noise Budget, ADC and DAC Distortion, Role of FPGA/CPU/GPU in SDR, Applications of FPGA in SDR, Design Principles using FPGA, Trade –offs in using DSP, FPGA and ASIC, Power Management Issues in	Architecture of SDR-Open Architecture, Software Communication Architecture, Transmitter				
ADC and DAC Distortion, Role of FPGA/CPU/GPU in SDR, Applications of FPGA in SDR, Design Principles using FPGA, Trade –offs in using DSP, FPGA and ASIC, Power Management Issues in	Receiver Homodyne/heterodyne architecture, RF front End, ADC, DAC, DAC/ADC Noise Budget,				
Principles using FPGA, Trade –offs in using DSP, FPGA and ASIC, Power Management Issues in	ADC and DAC Distortion, Role of FPGA/CPU/GPU in SDR, Applications of FPGA in SDR, Design				

Unit III : Multi Rate Signal Processing 6Hrs						
Sample timing algorithms, Frequency offset estimation and correction, Channel Estimation,						
Basics of Multi Rate, Multi Rate DSP, Multi Rate Algorithm, DSP techniques in SDR, OFDM in						
SDR						
Unit IV : Smart/MIMO Antennas using Software Radio 6Hrs						
Smart Antenna Architecture, Vector Channel Modeling, Benefits of Smart Antenna Phased Antenna						
Array Theory, Adaptive Arrays, DOA Arrays, Applying Software Radio Principles to Antenna						
Systems, Beam forming for systems-Multiple Fixed Beam Antenna Array, Fully Adaptive Array,						
Relative Benefits and Trade-offs OF Switched Beam and Adaptive Array, Smart Antenna						
Algorithms , Hardware Implementation of Smart Antennas, MIMO -frequency, time, sample						
Synchronization, Space time block coding-Space Time Filtering, Space Time Trellis Coding .						
Case Study : Principles of MIMO-OFDM						
Unit : Cognitive Radio 6Hrs						
Cognitive Radio Architecture, Dynamic Access Spectrum, Spectrum Efficiency, Spectrum Efficiency						
gain in SDR and CR ,Spectrum Usage, SDR as a platform for CR, OFDM as PHY layer ,OFDM						
Modulator, OFDM Demodulator, OFDM Bandwidth, Benefits of OFDM in CR, Spectrum Sensing in						
CR, CR Network						
Unit VI : Applications of SDR 7Hrs						
Application of SDR in Advance Communication System-Case Study, Challenges and Issues						
Implementation, Parameter Estimation - Environment, Location, other factors, Vertical Handoff,						
Network Interoperability.						
Case Study : 1)CR for Public Safety – PSCR , Modes of PSCR, Architecture of PSCR						
2)Beagle board based SDR 3)Embedded PCSR using GNU radio						
Text Books:						
1. Jeffrey. H. Reed, Software Radio : A Modern Approach to Radio Engineering, Pearson LPE						
2 Markus Dillinge KambizMadani Nancy Alonistioti Software Defined Radio Architectures						
Systems and Functions Wiley						
Reference Books:						
1 Tony I Rounhael RE and DSP for SDR Elsevier Newness Press 2008						
2 Dr TaiStrumon Evolution of SDD. Main De survey						
2. Dr. Lajstruman, Evaluation of SDK – Main Document						
5. SDK –Handbook, 8th Edition, PENTEK						
4. Bruce a. Fette, Cognitive Radio Technology, Newness, Elsevier						

404191 Audio Video Engineering (Elective III)

Credits: 03

Teaching Scheme:	Examination Scheme:		
Lecture : 03Hr/Week	In-Sem : 30 Marks		
	End-Sem : 70 Marks		

Course Objectives:

- After learning AVE course, students will get benefit to learn and understand the working of real life video system and the different elements of video system plus the encoding/decoding techniques.
- The learners will be groomed up to understand different channel allocations, difference between various systems present in this world, their transmission and reception techniques.
- Students will get insight on functioning of individual blocks, different standards of compression techniques and they will be acquainted with different types of analog, digital TV and HDTV systems.
- The students will get overview of fundamentals of Audio systems and basics of Acoustics

Course Outcomes:

On successful completion of the course, students able to:

- 1. Apply the fundamentals of Analog Television and Colour Television standards.
- 2. Explain the fundamentals of Digital Television, DTV standards and parameters.
- 3. Study and understand various HDTV standards and Digital TV broadcasting systems and acquainted with different types of analog, digital TV and HDTV systems.
- 4. Understandacoustic fundamentals and various acoustic systems.

Unit I: Fundamentals of Colour Television

The basic Television system and scanning principles, Composite video signal and television standards, Color TV systems, fundamentals, mixing of colours, colour perception, chromaticity diagram. NTSC, PAL, SECAM systems, colour TV transmitter, (high level, low level), colour TV receivers.

Unit II: Digital TV and Display Devices

Introduction to Digital TV, Digital TV signals and parameters, Digital TV Transmitters, MAC signals, advanced MAC signal transmission, Digital TV receivers, Basic principles of Digital Video compression techniques, MPEG Standards. Digital TV recording techniques, Display devices: OLED, LCD, TFT, Plasma, Camcoder, Digicam.

Unit III: HDTV

HDTV standards and systems, HDTV transmitter and receiver/encoder, Digital TV satellite Systems, video on demand, CCTV, CATV, direct to home TV, set top box with recording facility, conditional access system (CAS), 3D TV systems, HD video cameras, Digital broadcasting, case study (Cricket match, Marathon, Football match).

Methods of sound recording & reproduction, optical recording, CD recording, audio standards. Digital Sound Recording, CD/ DVD player, MP3 player, Blue Ray DVD Players, MP3 Player.

8Hrs

6Hrs

6Hrs

Unit VI: Fundamentals of Acoustics

6Hrs

Studio acoustics & reverberation, P.A. system for auditorium, acoustic chambers, Cordless microphone system, special types of speakers & microphones, Digital Radio Receiver Satellite radio reception.

Text Books

- 1. Television and video Engineering, A. M. Dhake, TMH Publication.
- 2. R. R. Gulati, "Monochrome and colour television"

Reference Books

- 1. Television Engineering -Audio and Video Systems, D. S. Bormane, P.B. Mane& R RItkarkar, Wiley publication.
- 2. S. P. Bali, "Color TV Theory and Practice".
- 3. Bernard Grobb, Charles E, "Basic TV and Video Systems".
- 4. Video Demisified, Kelth jack, Penram International Publication.
- 5. Audio Video Systems, R.G. Gupta, TMH Publication

404192 ROBOTICS (Elective-IV)				
Credits: 03				
Feaching Scheme:Examination Scheme:				
Lecture : 03Hr/Week	In-Sem : 30 Marks End-Sem: 70 Marks			

Course Objectives:

- To understand the history, concept development and key components of robotics technologies.
- To understand basic mathematics manipulations of spatial coordinate representation and transformation.
- Able to solve basic robot forward and inverse kinematic problems
- To understand and able to solve basic robotic dynamics, path planning and control problems

Course Outcomes:

On completion of the course, student will be able to

- 1. Familiar with the history, concept development and key components of robotics technologies.
- 2. Implement basic mathematics manipulations of spatial coordinate representation and transformation.
- 3. Solve basic robot forward and inverse kinematic problems
- 4. Understand and able to solve basic robotic dynamics, path planning and control problems

Unit I :Basic concepts in robotics 6Hrs

Definition ; anatomyof robot, basic structure of robot, Specifications and Classification of robot, Safety Measures in robotics ,Industrial Applications of Robots.

Unit II :Robot drivers,Sensors and Vision 6Hrs

Drives for robots: Electric, hydraulic and pneumatic.

Sensors:Internal-External,Contact-noncontact, position, velocity,force, torque, proximity and range. **Vision:** Introduction to techniques, Image acquisition and processing

Unit III : End Effectors and Actuators6Hrs					
Different types of grippers- Mechanical, Magnetics, vacuum, Adhesive, Gripper force					
Analysis&Gripper Design, overview of actuators, Power and torque, Acceleration and					
velocitySpecifications and characteristics of Stepper motors, AC motors, DC motors and					
servomotors.					
Unit IV : Robot Kinematics and Dynamics 8Hrs					
Direct and inverse kinematics for industrial robots for position and orientation, Redundancy,					
Manipulator, direct and inverse velocity. Lagrangian formulation , Link inertia tensor and					
manipulator inertia tensor, Newton -Eller formulation for RP and RP manipulators, Trajectory					
planning, interpolation, static force and moment transformation, solvability, stiffness					
Unit V:Programming methods 6Hrs					
Robot language classification, Robot language structure, elements and its functions. Simple					
programs on Sensing distance and direction., Line Following Algorithms, Feedback Systems Other					
topics on advance robotic techniques					
Unit VI : Developing and building a robot 6Hrs					
Models of flexible links and joints, Robotic arm – Components and structure, Types of joints and					
workspace, Design models for mechanic arms and lifting systems					
Case Study: 1. Robots in material handling and assembly.					
2. Human Robot Interaction					
Text Books:					
1. Introduction to Robotics By S.K.Saha , Tata McGraw Hill					
2. Robotics Control ,Sensing ,Vision and Intelligence by K.S. Fu, R.C .Gonzalez, C.S.G.Lee ,					
Tata McGraw Hill					
Reference Books:					
1. J. Hirchhorn: Kinematics and Dynamics of Machinery, McGraw Hill book co.					
2. Robert J. Schilling, Fundamentals of Robotics- Analysis and Control, Prentics Hall india.					
3. Robotics Technology and Flexible Automation by S.R.Deb, S. Deb, Tata McGraw Hill					
4. Robot Motion and Control (Recent Developments) by M.Thoma& M. Morari					

404194 Biomedical Electronics (Elective-IV)			(V)		
		Cree	dits: 03		
Teaching Scheme:		Examination Scheme:			
Lecture : 03 hr/week				In-Sem End-Sem	: 30 Marks : 70 Marks

Course Objectives:

- To study Human Physiological Systems from Engineering Perspectives
- To understand the basic signals in the field of biomedical.
- To study origins and characteristics of some of the most commonly used biomedical signals, including ECG, EEG, PCG, Pulse.
- To understand Sources and characteristics of noise and artifacts in bio signals.
- To understand use of bio signals in diagnosis, patient monitoring and physiological investigation

Course Outcomes:

After successfully completing the course students will be able to:

- 1. Model a biomedical system.
- 2. Understand various methods of acquiring bio signals.Understand various sources of bio

43

- 3. signal distortions and its remedial techniques.
- 4. Get an Overview of major Devices currently used in Medical field
- 5. The students will have an understanding of analyzing bio-signal and classifying them

Unit I: Introduction to Biomedical System

Biomedical Instrumentation System, Cell structure, Bio-Cell potential, Concept of Bio-electrodes, Types of Bio-electrodes to measure Bio-signal, Transducers and Sensors to measure Bio signal EEG,ECG,EMG, Respiration, Body temperature, SPO2, and Pulse. Artifacts in Bio signal Acquisition: Noise, Power line, Baseline, Skin Impedance and Motion Artifacts, Techniques to reduce the artifacts.

Unit II: Cardiovascular System 6Hrs

Introduction to Heart, Physiology and anatomy of Heart, Lead Configurations to acquire ECG, ECG preamplifiers, ECG recorder, Heart Sounds and Murmurs, Phonocardiography

Unit III:Nervous System 6Hrs

Nerve Cell and nerve potential, Neural Communication, Brain structure, 10-20 electrode placement for EEG, Types of Montage configuration, Types of EEG signals and its significance, EEG machine, EEG applications for Epilepsy and Sleep apnea.

Unit IV: Medical Instrumentation

Design of Instrumentation system for ECG acquisition, Isolation Amplifier, Right Leg drive Mechanism, Noise removal techniques using Active Filters, Wiener Filters, Adaptive Filters: Basic Concept, Principle noise cancellation model, removal of periodic events, using adaptive cancellation, adaptive cancellation of maternal ECG from fetal ECG of Interest. Grounding and shielding Concepts

Unit: Analysis of Electrical Activity of Heart

ECG Signal Processing: Removal of Base line and Power line Interference, Muscle noise Filtering, Highlight ECG feature points, QRS detection, ECG classification for normal and abnormal state using Multilayer Perceptron. Use of Multiscale analysis for ECG parameter estimation.

Unit VI:Medical Devices

Introduction To Blood Pressure Measurement (noninvasive), Life saving Devices Pacemakers and Defibrillators, Bedside Monitors, Central Monitoring system, Stress Test System, X Ray, CT scan, Dental instruments

Text Books:

- 1. Joseph J. Carr and John M. Brown, "Introduction to Biomedical Equipment Technology", 4th Edition, Prentice Hall, 2000.
- 2. R. Rangayan, "Biomedical Signal Analysis", Wiley 2002.
- 3. R.S.Khandpur, "Handbook of Biomedical Instrumentation", Tata McGraw Hill, New Delhi, 2003, Edition-II.

Reference Books:

- 1. John L Semmlow, "Bio-signal and Biomedical Image Processing", Marcel Dekker
- 2. Joseph J. Carr and John M. Brown, "Introduction to Biomedical Equipment Technology", 4thEdition, Prentice Hall, 2000.

8Hrs

6Hrs

6Hrs

4Hrs

Wireless Sensor Networks (Elective-IV) 404194

Credits: 03

Teaching Scheme:	Examination Scheme:	
Lecture : 03 hr/week	In-Sem : 30 End-Sem: 70	Marks) Marks

Course Objectives:

- To learn basic concepts of Wireless sensor networks ٠
- To be familiar with architecture and protocols used in Wireless sensor networks
- To provide knowledge of deployment and security issued of Wireless sensor networks ٠

Course Outcomes:

On completion of the course, student will be able to

- 1. Explain various concepts and terminologies used in WSN
- 2. Describe importance and use of radio communication and link management in WSN
- 3. Explain various wireless standards and protocols associated with WSN
- 4. Recognize importance of localization and routing techniques used in WSN
- 5. Understand techniques of data aggregation and importance of security in WSN
- 6. Examine the issues involved in design and deployment of WSN

Unit1 : Introduction

What are Wireless Sensor Networks, Wireless Sensor Node, Anatomy of a Sensor Node, architecture of WSN, Performance metrics in WSNs, types of WSN

Unit 2: Radio Communication And Link Management

Radio Waves and Modulation/Demodulation, Properties of Wireless Communications, Medium Access Protocols, Wireless Links Introduction, Properties of Wireless Links, Error Control, Naming and Addressing, Topology Control

Unit 3: Wireless Standards And Protocol Stack

WSN Standards- IEEE802.15.4 Low rate WPAN, Zigbee, WirelessHART, ISA 100.11a, 6LoWPAN, IEEE802.15.3, Wibree, BLE, Zwave, ANT, Insteon, Wavenis, Protocol stack of WSNs, Cross Layer Protocol Stack

Unit 4: Localization And Routing

Localization : Localization Challenges and Properties, Deployment Schemes, Proximity Schemes. Ranging Schemes, Range-Based Localization, Range-Free Localization,

Routing Basics, Routing Metrics, Routing Protocols, Full-Network Broadcast, Location-Based Routing, Directed Diffusion, Collection Tree Protocol, Zigbee, Multi-Hop Communications

Unit 5: Data Aggregation And Security

Clustering Techniques, In-Network Processing and Data Aggregation, Compressive Sampling, Security Issues in Wireless Sensor Networks, Attacks, Defensive Measures, Securityrequirements and threat model,

Unit 6: Designing And Deploying WSN Applications

Designing and Deploying WSN Applications, Early WSN Deployments, General Problems, General Testing and Validation, Requirements Analysis, The Top-Down Design Process, Bottom-Up Implementation Process.

6 Hrs

7 Hrs

7 Hrs

7 Hrs

7 Hrs

6 Hrs

Text Books

1.Kazem Sohraby, Daniel Minoli and TaiebZnati, "Wireless Sensor Networks Technology, Protocols, and Applications", John Wiley & Sons, 2007.

2.Holger Karl and Andreas Willig, "Protocols and Architectures for Wireless Sensor Networks", John Wiley & Sons, Ltd, 2005.

Reference Books

1. HossamFahmy, "Wireless Senor Networks: Concepts, Application, experimentation and analysis", Springer Publication

2. Anna Forster, "Introduction to Wireless Sensor Networks", IEEE Press, Wiley Publication 3. Anna Hac, "Wireless Sensor Network Designs", John Wiley & Sons Ltd,

404194 Renewable Energy Systems (Elective-IV) Credits: 03

	C		• • • • • •			
Teaching Scheme:		Exa	Examination Scheme:			
Lecture : 03hr/week			In-Sem End-Sem	: 30 Marks : 70 Marks		
Course Objectives:						
• To study energy generation, different energy sources and their utilization and impact on						
environment						
 To gain knowledge of solar radiation and its applications 						
• To understand the wind energy and its nature						
• To analyze the performance of solar collectors and wind turbines						
• To learn fuel cell and its efficiency						
Course Outcomes:						
On successful completion of the course, students able to:						
1. Interpret energy reserves of India and potential of different energy sources.						
2. Measure the solar radiation parameters and performance of different solar collectors.						
3. Calculate different p	parameters of w	ind turbine rotor.				
4. Implicit the importance and applications of geothermal and ocean energy.						
5. Demonstrate knowledge in field of fuel cell and potential for power generation.						
Unit I : Energy Resources and Utilization: 6Hrs						
Conservation and forms of en	nergy, energy i	eserves in India, nucl	lear power, hyd	roelectric power		
potential, India's power scene, impact on environment, renewable energy sources, energy						
parameters, cogeneration, rational energy use of energy, energy efficiency and conservation, new						
technologies, distributed energy systems and dispersed generation.						
Unit II :Solar Energy 8Hrs						
Solar constant, spectral distri	bution of extr	aterrestrial radiation,	terrestrial solar	radiation, solar		
radiation geometry, computation of COS0, sunrise, sunset, day length, LAT, Empirical equation,						
solar radiation measurement, Solar Thermal energy collectors, design parameters, laws of thermal						
radiation, radiation heat transfer between real bodies, radiation optics, transmitivity, heat losses and						
coefficient, Solar Thermal energy storage.						
Unit III : Solar photovoltaic systems & Solar Applications8Hrs						
Solar photovoltaic systems: Photovoltaics, Different types of PV Cells, Mono-poly crystalline and						
amorphous Silicon solar cells. Design of PV array. Efficiency and cost of PV systems						
Solar Applications: Solar water heating, solar distillation, solar ponds, solar pumping system, solar						
cooker, solar green house.				011		
Unit IV : Wind energy		· · · · · · · · · · · · · · · · · · ·		8Hrs		
Classification, types of rotors, terminology, operation of wind turbines, wind energy extraction, wind						
characteristics, whild speed, energy estimation, power density duration curve, density function, field						
uata analysis, unection and while speed, variation of while speed, while scale, energy pattern factor in						
nower generation curve horizontal axis wind turbine generator modes of wind power generation						
advantages and disadvantages wind energy farms						
auvantages and uisauvantages,	white chergy la	1110.				

Unit V: Ocean and Geothermal Energy

6Hrs

Ocean Energy:Tidal Energy, Tidal characteristics, Tidal Energy estimation, Development of a tidal power scheme,Wave energy- characteristics-energy and power from the waves.

Geothermal energy:Structure of earth's interior, sites, field, gradient, resources, power generation, geothermal resources in India, utilization, global status of electricity generation from geothermal resources, advantages of geothermal energy

Unit VI : Fuel Cells

6Hrs

Principle of operation of an acidic Fuel Cell, Technical parameter, Fuel Processor, methanol fuel cell, fuel cell types, Advantages of fuel cell power plants, comparison between acidic and alkaline hydrogen-oxygen fuel cells, state of art fuel cells, energy output of a fuel cell, efficiency and EMF of a fuel cell, Gibbs-Helmholtz equation, operating characteristics of fuel cells.

Text Books:

- 1. D.P. Kothari, K.C. Singal and RakeshRanjan, "Renewable Energy Sources and Emerging Technologies", Prentice Hall of India, New Delhi, 2009.
- 2. S.P. Sukhatme, "Solar Energy: Principles of Thermal Collection and Storage", TMH, New Delhi, 2008

Reference Books:

- 1. Chetan Singh Solanki, "Renewable Energy Technologies", Prentice Hall of India, New Delhi, 2009
- 2. G. D. Rai, "Non- conventional Energy Sources", Khanna publishers, New Delhi, 2011.
- 3. MaltiGoel, "Energy Souces and Global Warming", allied publishers Pvt Ltd. New Delhi, 2005.